Browsing by Subject "Proto-Oncogene Proteins c-myc"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access ABL kinases regulate the stabilization of HIF-1α and MYC through CPSF1.(Proceedings of the National Academy of Sciences of the United States of America, 2023-04) Mayro, Benjamin; Hoj, Jacob P; Cerda-Smith, Christian G; Hutchinson, Haley M; Caminear, Michael W; Thrash, Hannah L; Winter, Peter S; Wardell, Suzanne E; McDonnell, Donald P; Wu, Colleen; Wood, Kris C; Pendergast, Ann MarieThe hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.Item Restricted c-Myc is required for maintenance of glioma cancer stem cells.(PLoS One, 2008) Wang, J; Wang, H; Li, Z; Wu, Q; Lathia, JD; McLendon, RE; Hjelmeland, AB; Rich, JNBACKGROUND: Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G(0)/G(1) phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice. CONCLUSIONS/SIGNIFICANCE: These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.Item Open Access Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone.(Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2012-10) Green, Tina Marie; Young, Ken H; Visco, Carlo; Xu-Monette, Zijun Y; Orazi, Attilio; Go, Ronald S; Nielsen, Ole; Gadeberg, Ole V; Mourits-Andersen, Torben; Frederiksen, Mikael; Pedersen, Lars Møller; Møller, Michael BoePURPOSE: Approximately 5% of diffuse large B-cell lymphomas (DLBCLs) are double-hit lymphomas (DHLs) with translocations of both MYC and BCL2. DHLs are characterized by poor outcome. We tested whether DLBCLs with high expression of MYC protein and BCL2 protein share the clinical features and poor prognosis of DHLs. PATIENTS AND METHODS: Paraffin-embedded lymphoma samples from 193 patients with de novo DLBCL who were uniformly treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were studied using immunohistochemistry for MYC, BCL2, CD10, BCL6, and MUM1/interferon regulatory factor 4, and fluorescent in situ hybridization (FISH) for MYC and BCL2. RESULTS: FISH analysis identified DHL in 6% of patients, who showed the expected poor overall survival (OS; P = .002). On the basis of immunohistochemical MYC and BCL2 expression, a double-hit score (DHS) was assigned to all patients with DLBCL. The DHS-2 group, defined by high expression of both MYC and BCL2 protein, comprised 29% of the patients. DHS 2 was significantly associated with lower complete response rate (P = .004), shorter OS (P < .001), and shorter progression-free survival (PFS; P < .001). The highly significant correlation with OS and PFS was maintained in multivariate models that controlled for the International Prognostic Index and the cell-of-origin subtype (OS, P < .001; PFS, P < .001). DHS was validated in an independent cohort of 116 patients who were treated with R-CHOP. CONCLUSION: The immunohistochemical DHS defined a large subset of DLBCLs with double-hit biology and was strongly associated with poor outcome in patients treated with R-CHOP.Item Open Access Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species.(Elife, 2013-09-03) Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich DCells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001.Item Open Access MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy.(Cancer Res, 2009-10-01) Balakumaran, Bala S; Porrello, Alessandro; Hsu, David S; Glover, Wayne; Foye, Adam; Leung, Janet Y; Sullivan, Beth A; Hahn, William C; Loda, Massimo; Febbo, Phillip GLoss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.Item Open Access MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program.(Blood, 2013-05) Hu, Shimin; Xu-Monette, Zijun Y; Tzankov, Alexander; Green, Tina; Wu, Lin; Balasubramanyam, Aarthi; Liu, Wei-min; Visco, Carlo; Li, Yong; Miranda, Roberto N; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William WL; Zhao, Xiaoying; van Krieken, J Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés JM; Zhou, Fan; Slack, Graham W; Gascoyne, Randy D; Tu, Meifeng; Variakojis, Daina; Chen, Weina; Go, Ronald S; Piris, Miguel A; Møller, Michael B; Medeiros, L Jeffrey; Young, Ken HDiffuse large B-cell lymphoma (DLBCL) is stratified into prognostically favorable germinal center B-cell (GCB)-like and unfavorable activated B-cell (ABC)-like subtypes based on gene expression signatures. In this study, we analyzed 893 de novo DLBCL patients treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). We show that MYC/BCL2 protein coexpression occurred significantly more commonly in the ABC subtype. Patients with the ABC or GCB subtype of DLBCL had similar prognoses with MYC/BCL2 coexpression and without MYC/BCL2 coexpression. Consistent with the notion that the prognostic difference between the 2 subtypes is attributable to MYC/BCL2 coexpression, there is no difference in gene expression signatures between the 2 subtypes in the absence of MYC/BCL2 coexpression. DLBCL with MYC/BCL2 coexpression demonstrated a signature of marked downregulation of genes encoding extracellular matrix proteins, those involving matrix deposition/remodeling and cell adhesion, and upregulation of proliferation-associated genes. We conclude that MYC/BCL2 coexpression in DLBCL is associated with an aggressive clinical course, is more common in the ABC subtype, and contributes to the overall inferior prognosis of patients with ABC-DLBCL. In conclusion, the data suggest that MYC/BCL2 coexpression, rather than cell-of-origin classification, is a better predictor of prognosis in patients with DLBCL treated with R-CHOP.Item Open Access Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood.(Stem cell reviews and reports, 2015-08) Zhou, Hongyan; Martinez, Hector; Sun, Bruce; Li, Aiqun; Zimmer, Matthew; Katsanis, Nicholas; Davis, Erica E; Kurtzberg, Joanne; Lipnick, Scott; Noggle, Scott; Rao, Mahendra; Chang, StephenHuman peripheral blood and umbilical cord blood represent attractive sources of cells for reprogramming to induced pluripotent stem cells (iPSCs). However, to date, most of the blood-derived iPSCs were generated using either integrating methods or starting from T-lymphocytes that have genomic rearrangements thus bearing uncertain consequences when using iPSC-derived lineages for disease modeling and cell therapies. Recently, both peripheral blood and cord blood cells have been reprogrammed into transgene-free iPSC using the Sendai viral vector. Here we demonstrate that peripheral blood can be utilized for medium-throughput iPSC production without the need to maintain cell culture prior to reprogramming induction. Cell reprogramming can also be accomplished with as little as 3000 previously cryopreserved cord blood cells under feeder-free and chemically defined Xeno-free conditions that are compliant with standard Good Manufacturing Practice (GMP) regulations. The first iPSC colonies appear 2-3 weeks faster in comparison to previous reports. Notably, these peripheral blood- and cord blood-derived iPSCs are free of detectable immunoglobulin heavy chain (IGH) and T cell receptor (TCR) gene rearrangements, suggesting they did not originate from B- or T- lymphoid cells. The iPSCs are pluripotent as evaluated by the scorecard assay and in vitro multi lineage functional cell differentiation. Our data show that small volumes of cryopreserved peripheral blood or cord blood cells can be reprogrammed efficiently at a convenient, cost effective and scalable way. In summary, our method expands the reprogramming potential of limited or archived samples either stored at blood banks or obtained from pediatric populations that cannot easily provide large quantities of peripheral blood or a skin biopsy.Item Open Access Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway.(Science (New York, N.Y.), 2019-05) Lee, Yu-Ru; Chen, Ming; Lee, Jonathan D; Zhang, Jinfang; Lin, Shu-Yu; Fu, Tian-Min; Chen, Hao; Ishikawa, Tomoki; Chiang, Shang-Yin; Katon, Jesse; Zhang, Yang; Shulga, Yulia V; Bester, Assaf C; Fung, Jacqueline; Monteleone, Emanuele; Wan, Lixin; Shen, Chen; Hsu, Chih-Hung; Papa, Antonella; Clohessy, John G; Teruya-Feldstein, Julie; Jain, Suresh; Wu, Hao; Matesic, Lydia; Chen, Ruey-Hwa; Wei, Wenyi; Pandolfi, Pier PaoloActivation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.