Browsing by Subject "Pulmonary Alveoli"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access An evaluation of remifentanil-sevoflurane response surface models in patients emerging from anesthesia: model improvement using effect-site sevoflurane concentrations.(Anesth Analg, 2010-08) Johnson, Ken B; Syroid, Noah D; Gupta, Dhanesh K; Manyam, Sandeep C; Pace, Nathan L; LaPierre, Cris D; Egan, Talmage D; White, Julia L; Tyler, Diane; Westenskow, Dwayne RINTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.Item Open Access Catastrophic antiphospholipid syndrome with concurrent thrombotic and hemorrhagic manifestations.(Lupus, 2013-07) Rangel, ML; Alghamdi, I; Contreras, G; Harrington, T; Thomas, DB; Barisoni, L; Andrews, D; Wolf, M; Asif, A; Nayer, AAntiphospholipid syndrome (APS) is a distinct autoimmune prothrombotic disorder due to pathogenic autoantibodies directed against proteins that bind to phospholipids. APS is characterized by arterial and venous thrombosis and their clinical sequelae. Catastrophic antiphospholipid syndrome (CAPS) is a rare and often fatal form of APS characterized by disseminated intravascular thrombosis and ischemic injury resulting in multiorgan failure. Rarely, intravascular thrombosis in CAPS is accompanied by hemorrhagic manifestations such as diffuse alveolar hemorrhage. Here, we report a 43-year-old woman who presented with anemia, acute gastroenteritis, abnormal liver function tests, bilateral pulmonary infiltrates, and a systemic inflammatory response syndrome. The patient developed respiratory failure as a result of diffuse alveolar hemorrhage followed by acute renal failure. Laboratory tests disclosed hematuria, proteinuria, and reduced platelet count. Microbiologic tests were negative. A renal biopsy demonstrated acute thrombotic microangiopathy and extensive interstitial hemorrhage. Serologic tests disclosed antinuclear antibodies and reduced serum complement C4 concentration. Coagulation studies revealed the lupus anticoagulant and autoantibodies against cardiolipin, beta 2-glycoprotein I, and prothrombin. High-dose glucocorticoids and plasma exchange resulted in rapid resolution of pulmonary, renal, and hematological manifestations. This rare case emphasizes that CAPS can present with concurrent thrombotic and hemorrhagic manifestations. Rapid diagnosis and treatment may result in complete recovery.Item Open Access COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.(Nature, 2021-07) Delorey, Toni M; Ziegler, Carly GK; Heimberg, Graham; Normand, Rachelly; Yang, Yiming; Segerstolpe, Åsa; Abbondanza, Domenic; Fleming, Stephen J; Subramanian, Ayshwarya; Montoro, Daniel T; Jagadeesh, Karthik A; Dey, Kushal K; Sen, Pritha; Slyper, Michal; Pita-Juárez, Yered H; Phillips, Devan; Biermann, Jana; Bloom-Ackermann, Zohar; Barkas, Nikolaos; Ganna, Andrea; Gomez, James; Melms, Johannes C; Katsyv, Igor; Normandin, Erica; Naderi, Pourya; Popov, Yury V; Raju, Siddharth S; Niezen, Sebastian; Tsai, Linus T-Y; Siddle, Katherine J; Sud, Malika; Tran, Victoria M; Vellarikkal, Shamsudheen K; Wang, Yiping; Amir-Zilberstein, Liat; Atri, Deepak S; Beechem, Joseph; Brook, Olga R; Chen, Jonathan; Divakar, Prajan; Dorceus, Phylicia; Engreitz, Jesse M; Essene, Adam; Fitzgerald, Donna M; Fropf, Robin; Gazal, Steven; Gould, Joshua; Grzyb, John; Harvey, Tyler; Hecht, Jonathan; Hether, Tyler; Jané-Valbuena, Judit; Leney-Greene, Michael; Ma, Hui; McCabe, Cristin; McLoughlin, Daniel E; Miller, Eric M; Muus, Christoph; Niemi, Mari; Padera, Robert; Pan, Liuliu; Pant, Deepti; Pe'er, Carmel; Pfiffner-Borges, Jenna; Pinto, Christopher J; Plaisted, Jacob; Reeves, Jason; Ross, Marty; Rudy, Melissa; Rueckert, Erroll H; Siciliano, Michelle; Sturm, Alexander; Todres, Ellen; Waghray, Avinash; Warren, Sarah; Zhang, Shuting; Zollinger, Daniel R; Cosimi, Lisa; Gupta, Rajat M; Hacohen, Nir; Hibshoosh, Hanina; Hide, Winston; Price, Alkes L; Rajagopal, Jayaraj; Tata, Purushothama Rao; Riedel, Stefan; Szabo, Gyongyi; Tickle, Timothy L; Ellinor, Patrick T; Hung, Deborah; Sabeti, Pardis C; Novak, Richard; Rogers, Robert; Ingber, Donald E; Jiang, Z Gordon; Juric, Dejan; Babadi, Mehrtash; Farhi, Samouil L; Izar, Benjamin; Stone, James R; Vlachos, Ioannis S; Solomon, Isaac H; Ashenberg, Orr; Porter, Caroline BM; Li, Bo; Shalek, Alex K; Villani, Alexandra-Chloé; Rozenblatt-Rosen, Orit; Regev, AvivCOVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.Item Open Access Defined conditions for long-term expansion of murine and human alveolar epithelial stem cells in three-dimensional cultures.(STAR protocols, 2022-06-10) Konishi, Satoshi; Tata, Aleksandra; Tata, Purushothama RaoAlveolar type 2 cells (AT2s) serve as stem cells of the alveoli and restore cell numbers after injury. Here, we describe a detailed protocol for the isolation, purification, and culture of murine and human AT2s. We have developed chemically defined and stroma-free culture conditions that enable expansion and maintenance of AT2s. The culture conditions are scalable and compatible with high-throughput chemical and genetic screenings and can potentially be used to generate large AT2 numbers for cell-based therapies. For complete details on the use and execution of this protocol, please refer to Katsura et al. (2020).Item Open Access Epithelial injury and interstitial fibrosis in the proximal alveolar regions of rats chronically exposed to a simulated pattern of urban ambient ozone.(Toxicology and applied pharmacology, 1992-08) Chang, LY; Huang, Y; Stockstill, BL; Graham, JA; Grose, EC; Menache, MG; Miller, FJ; Costa, DL; Crapo, JDElectron microscopic morphometry was used to study the development of lung injury during and after chronic (78 weeks) exposure to a pattern of ozone (O3) designed to simulate high urban ambient concentrations that occur in some environments. The daily exposure regimen consisted of a 13-hr background of 0.06 ppm, an exposure peak that rose from 0.06 to 0.25 ppm, and returned to the background level over a 9-hr period, and 2-hr downtime for maintenance. Rats were exposed for 1, 3, 13, and 78 weeks. Additional groups of rats exposed for 13 or 78 weeks were allowed to recover in filtered clean air for 6 or 17 weeks, respectively. Rats exposed to filtered air for the same lengths of time were used as controls. Samples from proximal alveolar regions and terminal bronchioles were obtained by microdissection. Analysis of the proximal alveolar region revealed a biphasic response. Acute tissue reactions after 1 week of exposure included epithelial inflammation, interstitial edema, interstitial cell hypertrophy, and influx of macrophages. These responses subsided after 3 weeks of exposure. Progressive epithelial and interstitial tissue responses developed with prolonged exposure and included epithelial hyperplasia, fibroblast proliferation, and interstitial matrix accumulation. The epithelial responses involved both type I and type II epithelial cells. Alveolar type I cells increased in number, became thicker, and covered a smaller average surface area. These changes persisted throughout the entire exposure and did not change during the recovery period, indicating the sensitivity of these cells to injury. The main response of type II epithelial cells was cell proliferation. The accumulation of interstitial matrix after chronic exposure consisted of deposition of both increased amounts of basement membrane and collagen fibers. Interstitial matrix accumulation underwent partial recovery during follow-up periods in air; however, the thickening of the basement membrane did not resolve. Analysis of terminal bronchioles showed that short-term exposure to O3 caused a loss of ciliated cells and differentiation of preciliated and Clara cells. The bronchiolar cell population stabilized on continued exposure; however, chronic exposure resulted in structural changes, suggesting injury to both ciliated and Clara cells. We conclude that chronic exposure to low levels of O3 causes epithelial inflammation and interstitial fibrosis in the proximal alveolar region and bronchiolar epithelial cell injury.Item Restricted Hyperpolarized Xe MR imaging of alveolar gas uptake in humans.(PLoS One, 2010-08-16) Cleveland, Zackary I; Cofer, Gary P; Metz, Gregory; Beaver, Denise; Nouls, John; Kaushik, S Sivaram; Kraft, Monica; Wolber, Jan; Kelly, Kevin T; McAdams, H Page; Driehuys, BastiaanBACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) (129)Xe to probe the regional uptake of alveolar gases by directly imaging HP (129)Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129)Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129)Xe. The dissolved HP (129)Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129)Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129)Xe imaging reports on pulmonary function at a fundamental level.Item Open Access Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration.(Cell, 2016-03-24) Berg, Russell D; Levitte, Steven; O'Sullivan, Mary P; O'Leary, Seónadh M; Cambier, CJ; Cameron, James; Takaki, Kevin K; Moens, Cecilia B; Tobin, David M; Keane, Joseph; Ramakrishnan, LalitaA zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.Item Open Access Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung.(Nature communications, 2015-04-13) Jain, Rajan; Barkauskas, Christina E; Takeda, Norifumi; Bowie, Emily J; Aghajanian, Haig; Wang, Qiaohong; Padmanabhan, Arun; Manderfield, Lauren J; Gupta, Mudit; Li, Deqiang; Li, Li; Trivedi, Chinmay M; Hogan, Brigid LM; Epstein, Jonathan AThe plasticity of differentiated cells in adult tissues undergoing repair is an area of intense research. Pulmonary alveolar type II cells produce surfactant and function as progenitors in the adult, demonstrating both self-renewal and differentiation into gas exchanging type I cells. In vivo, type I cells are thought to be terminally differentiated and their ability to give rise to alternate lineages has not been reported. Here we show that Hopx becomes restricted to type I cells during development. However, unexpectedly, lineage-labelled Hopx(+) cells both proliferate and generate type II cells during adult alveolar regrowth following partial pneumonectomy. In clonal 3D culture, single Hopx(+) type I cells generate organoids composed of type I and type II cells, a process modulated by TGFβ signalling. These findings demonstrate unanticipated plasticity of type I cells and a bidirectional lineage relationship between distinct differentiated alveolar epithelial cell types in vivo and in single-cell culture.