Browsing by Subject "Pulmonary Valve Stenosis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Comparison of long-term postoperative sequelae in patients with tetralogy of Fallot versus isolated pulmonic stenosis.(Am J Cardiol, 2014-07-15) Zdradzinski, Michael J; Qureshi, Athar M; Stewart, Robert; Pettersson, Gosta; Krasuski, Richard APatients with tetralogy of Fallot (TOF) after complete repair and pulmonic stenosis (PS) after surgical valvotomy often develop significant pulmonic regurgitation (PR) that eventually requires valve replacement. Although criteria exist for the timing of pulmonary valve replacement in TOF, it remains less clear when to intervene in valvotomy patients and whether TOF recommendations can be applied. Our aim was to compare the structural and functional sequelae of valvotomy for PS with complete repair for TOF. We compared the clinical characteristics, electrocardiograms, echocardiograms, cardiac magnetic resonance imaging (MRI), and invasive hemodynamics of 109 adults (34 PS and 75 TOF) newly referred to a congenital heart disease center for evaluation of PR between 2005 and 2012. Both cohorts were similar in terms of baseline demographics and presenting New York Heart Association function class. Valvotomy patients had a slightly greater degree of PR by echocardiogram, although it was similar by cardiac MRI. Electrocardiography QRS width was greater in patients with TOF (114±27 vs 150±28 ms, p<0.001). MRI right ventricular ejection fraction (49±8 vs 41±11%, p=0.001) and left ventricular ejection fraction (59±7 vs 52±10%, p=0.002) were lower in patients with TOF. Pacemaker or defibrillator implantation was significantly greater in patients with TOF (3% vs 23%, p=0.011). In conclusion, patients postvalvotomy and complete repair present with similar degrees of PR and severity of symptoms. Biventricular systolic function and electrocardiography QRS width appear less affected, suggesting morphologic changes in TOF and its repair that extend beyond the effects of PR. These findings suggest the need for developing disease-specific guidelines for patients with PR postvalvotomy.Item Open Access Incremenal Value of Cardiac Magnetic Resonance for Assessing Pulmonic Valve Regurgitation.(The Journal of heart valve disease, 2015-07) Zdradzinski, Michael; Elkin, Rachel; Flamm, Scott; Krasuski, RichardCardiac magnetic resonance (CMR) is the 'gold standard' for quantifying pulmonic regurgitation (PR) in adults with congenital heart disease, but remains costly and is less readily available than echocardiography. Qualitative echocardiographic assessment of PR is challenging, and guiding criteria are limited. It is unknown if echocardiography is sufficient to screen for significant PR. The study aim was to determine whether cardiac MRI provides additional benefit in the assessment of PR in adults with congenital heart disease.Patients with repaired tetralogy of Fallot or congenital pulmonic stenosis after valvotomy undergoing transthoracic echocardiography and CMR with no interval intervention were identified from a prospective registry. Patients with greater than mild pulmonic stenosis, residual ventricular septal defect or poor echocardiographic windows were excluded. Whole-cohort and subgroup (tetralogy of Fallot versus pulmonic stenosis) analyses for inter-modality agreement were performed.A total of 48 patients (24 men, 24 women; mean age 43 +/- 12 years) was included in the analysis. The unweighted kappa value for the two modalities was 0.30, suggesting 'fair' agreement, though only 52% had matching PR assessments. The indexed right ventricular end-systolic volume (RVESVi) correlated closely with cardiac MRI-monitored PR (p = 0.011 by analysis of variance), but not with that monitored with echocardiography (p = 0.081). Subgroup analysis demonstrated less inter-modality agreement in the tetralogy of Fallot population (kappa 0.25) than in the pulmonic stenosis population (kappa 0.35).CMR measurement of PR correlates closely with the RVESVi, and appears superior to echocardiography when assessing patients at risk for PR. The study results suggest a vital role for CMR whenever significant PR is suspected in the adult congenital heart disease population.Item Open Access PINOT NOIR: pulmonic insufficiency improvement with nitric oxide inhalational response.(J Cardiovasc Magn Reson, 2013-09-04) Hart, Stephen A; Devendra, Ganesh P; Kim, Yuli Y; Flamm, Scott D; Kalahasti, Vidyasagar; Arruda, Janine; Walker, Esteban; Boonyasirinant, Thananya; Bolen, Michael; Setser, Randolph; Krasuski, Richard ABACKGROUND: Tetralogy of Fallot (TOF) repair and pulmonary valvotomy for pulmonary stenosis (PS) lead to progressive pulmonary insufficiency (PI), right ventricular enlargement and dysfunction. This study assessed whether pulmonary regurgitant fraction measured by cardiovascular magnetic resonance (CMR) could be reduced with inhaled nitric oxide (iNO). METHODS: Patients with at least moderate PI by echocardiography undergoing clinically indicated CMR were prospectively enrolled. Patients with residual hemodynamic lesions were excluded. Ventricular volume and blood flow sequences were obtained at baseline and during administration of 40 ppm iNO. RESULTS: Sixteen patients (11 with repaired TOF and 5 with repaired PS) completed the protocol with adequate data for analysis. The median age [range] was 35 [19-46] years, BMI was 26 ± 5 kg/m(2) (mean ± SD), 50% were women and 75% were in NYHA class I. Right ventricular end diastolic volume index for the cohort was 157 ± 33 mL/m(2), end systolic volume index was 93 ± 20 mL/m(2) and right ventricular ejection fraction was 40 ± 6%. Baseline pulmonary regurgitant volume was 45 ± 25 mL/beat and regurgitant fraction was 35 ± 16%. During administration of iNO, regurgitant volume was reduced by an average of 6 ± 9% (p=0.01) and regurgitant fraction was reduced by an average of 5 ± 8% (p=0.02). No significant changes were observed in ventricular indices for either the left or right ventricle. CONCLUSION: iNO was successfully administered during CMR acquisition and appears to reduce regurgitant fraction in patients with at least moderate PI suggesting a potential role for selective pulmonary vasodilator therapy in these patients. TRIALS REGISTRATION: ClinicalTrials.gov, NCT00543933.Item Open Access Pulmonic Valve Disease: Review of Pathology and Current Treatment Options.(Current cardiology reports, 2017-09-16) Fathallah, Mouhammad; Krasuski, Richard AOur review is intended to provide readers with an overview of disease processes involving the pulmonic valve, highlighting recent outcome studies and guideline-based recommendations; with focus on the two most common interventions for treating pulmonic valve disease, balloon pulmonary valvuloplasty and pulmonic valve replacement.The main long-term sequelae of balloon pulmonary valvuloplasty, the gold standard treatment for pulmonic stenosis, remain pulmonic regurgitation and valvular restenosis. The balloon:annulus ratio is a major contributor to both, with high ratios resulting in greater degrees of regurgitation, and small ratios increasing risk for restenosis. Recent studies suggest that a ratio of approximately 1.2 may provide the most optimal results. Pulmonic valve replacement is currently the procedure of choice for patients with severe pulmonic regurgitation and hemodynamic sequelae or symptoms, yet it remains uncertain how it impacts long-term survival. Transcatheter pulmonic valve replacement is a rapidly evolving field and recent outcome studies suggest short and mid-term results at least equivalent to surgery. The Melody valve® was FDA approved for failing pulmonary surgical conduits in 2010 and for failing bioprosthetic surgical pulmonic valves in 2017 and has been extensively studied, whereas the Sapien XT valve®, offering larger diameters, was approved for failing pulmonary conduits in 2016 and has been less extensively studied. Patients with pulmonic valve disease deserve lifelong surveillance for complications. Transcatheter pulmonic valve replacement is a novel and attractive therapeutic option, but is currently only FDA approved for patients with failing pulmonary conduits or dysfunctional surgical bioprosthetic valves. New advances will undoubtedly increase the utilization of this rapidly expanding technology.