Browsing by Subject "QA"
- Results Per Page
- Sort Options
Item Open Access A Novel Comprehensive Verification Method for Multifocal RapidArc Radiosurgery Treatments(2012) Niebanck, Michael HenryPurpose: Radiosurgery has become a widely used procedure in the treatment of both solid tumors and secondary metastases in the brain. In cases with multiple brain lesions, isocenters are typically set up for each target, a process which can take hours and become very uncomfortable for the patient. Recently, multifocal treatments with a single isocenter have emerged as a solution. With the high doses delivered to small regions during radiosurgery, the importance of treatment verification is paramount, especially when delivering high doses to regions off isocenter.
Methods: A 5-arc RapidArc radiosurgery plan with a single isocenter and 5 targets was used to treat a dosimeter placed within a RPC-type head and neck phantom. The treatment was delivered five times at varying prescription doses, depending on the sensitivity of the PRESAGE dosimeter used. The delivered dose distribution was measured using an in-house optical-CT system and compared to the Eclipse-planned dose distribution using dose volume histograms and Gamma analysis.
Results: Reasonable dose agreement was measured between the majority of the dosimeters and the Eclipse plan (80-85% pass rate at 5%/3 mm Gamma critera). The failing voxels were located on the periphery of the dosimeter at regions of extremely high or low dose, suggesting a dose dependent stability of the PRESAGE formulation. The formulation with the best temporal stability had a much higher Gamma pass rate of 98% at 3%/2mm criteria.
Conclusions: The potential of accurate delivery of the complex radiosurgery plan was demonstrated with one of the three formulations of PRESAGE. While agreement was worse in the other formulations, the problem seemed to be an easily-fixable stability issue, resulting in improper scaling of doses. Replication of the most stable formulation would provide an excellent tool for verification of radiosurgery treatment delivery and other complex procedures.
Item Open Access Application of TG-218 to SRS and SBRT Pre-Treatment Patient Specific QA(2020) Xia, YuqingAbstract
Purpose: Updated recommendations for pre-treatment QA of patient-specific intensity modulated radiation therapy (IMRT) and Volumetric modulated arc therapy (VMAT) quality assurance (QA) were recently published by the AAPM task group TG-218. While the traditionally most common QA analysis is to use a Gamma index with dose & spatial analysis criteria of 3% & 3mm, respectively, TG-218 recommends a tighter spatial tolerance of 2mm for standard IMRT QA, and that even tighter tolerances should be considered for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Our purpose is to report our experience with applying the TG-218 recommendations to a large clinical SRS and SBRT program. In addition, a new SRS technique was recently developed at Duke, called Conformal Arc Informed Volumetric Modulated Arc Therapy (CAVMAT), which is designed to be less sensitive to configuration and delivery errors. We measured the agreement of CAVMAT for pre-treatment QA and compared it to the current standard (VMAT) to evaluate whether CAVMAT is more robust to delivery errors than VMAT.
Methods: We re-analyzed the pre-treatment QA with respect to the TG-218 recommendations. For Portal Dosimetry (Varian Medical Systems, Palo Alto, CA), this included IMRT brain (n=25) and SBRT / hypofractionated image guided radiotherapy (HIGRT) cases that utilize flattened photon beams (n=18). For Delta4 (ScandiDos, Madison, WI) this included single target SRS (n=24), multiple target SRS (n=25), SBRT cases using VMAT (n=74), and SBRT cases using IMRT with FFF photons (n=23). For ArcCHECK (Sun Nuclear, Melbourne, FL)), we take 25 single target VMAT SRS cases and 25 multiple target VMAT SRS cases. For SRS MapCHECK(Sun Nuclear, Melboume, FL), we analyze 10 multiple target VMAT SRS cases with 16 targets. A Gamma analysis was performed with 6 spatial/dose criteria combinations: 3%/3mm, 3%/2mm, 3%/1mm, 2%/1mm, 4%/1mm, 5%/1mm. We then calculated the TG-218 action limit and tolerance limit per plan type and compared to the “universal” TG-218 action limit of 90% having a Gamma <1.
To compare CAVMAT and VMAT, log file analysis and pre-treatment QA was performed for 10 patients with 20 plans (10 VMAT, 10 CAVMAT) with 46 targets in total. 10 VMAT plans were re-planned using CAVMAT, and the dosimetric effect due to treatment delivery errors was quantified for V6Gy, V12Gy, and V16Gy of healthy brain along with the maximum, average and minimum doses of each target. Gamma analysis of VMAT and CAVMAT plans was performed using Delta4 and SRS MapCHECK with 3% / 1mm, 2% / 1mm, 1% / 1mm criteria to assess the agreement during patient specific quality assurance.
Result: For Portal Dosimetry QA of IMRT brain and SBRT/HIGRT using a 3%/1mm criteria, the TG-218 action limit was 99.68, and 90.14, respectively; with 3.68% and 3.68% of cases failing the universal 90% criteria. For Delta4 QA of single target SRS, multiple target SRS, and SBRT IMRT with FFF using a 3%/1mm criteria, the TG-218 action limit was 93.64, 97.12, and 92.01, respectively; with 0%, 0%, and 0% of cases failing the universal 90% criteria. For Delta4 QA of SBRT VMAT using a 4%/1mm criteria, the TG-218 action limit was 94.47, with 100% passing. For ArcCHECK QA of single target and multiple target SRS VMAT using a 3%/2mm criteria, the TG-218 action limit was 98.06 and 96.59 respectively, with 100% passing. For SRS MapCHECK QA of multiple target SRS VMAT cases using 3%1mm criteria, the TG-218 action limit was 99.24 with 100% passing.
The average increase in V6Gy, V12Gy, V16Gy due to treatment delivery errors as quantified using the trajectory logfile was 0.94 ± 1.43, 0.90 ± 1.38%, and 1.23 ± 1.54% respectively for VMAT, and 0.035 ± 0.14%, 0.14 ± 0.18%, and 0.28 ± 0.24% for CAVMAT. The average change to target maximum, average, and minimum dose due to delivery errors was 0.53 ± 0.46%, 0.52 ± 0.46%, and 0.53 ± 0.56%, for VMAT, and 0.16 0.18%, 0.11 0.08%, and 0.03 0.24% for CAVMAT. There was no significant difference in magnitude of MLC discrepancies during delivery for VMAT and CAVMAT. For Gamma analysis with strict 1% / 1mm criteria, the average passing rate of VMAT gamma analysis is 94.53 ± 4.42%, while that of CAVMAT is 99.28 ± 1.74%.
Conclusion: For most QA devices, spatial tolerance of pre-treatment QA for SRS/SBRT can be tightened to 1mm while still maintaining an in-control QA process. The gamma criteria to 3%/1mm for all SRS cases and SBRT with IMRT and transitioning to a 4%1mm criteria for SBRT with VMAT have a spatial tolerance that is appropriate for the radiotherapy technique while not resulting in an excessive false positive failure rate. The CAVMAT treatment planning technique resulted in superior gamma analysis passing rate for each gamma analysis criteria.