Browsing by Subject "Quadratic hazard"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity.(Biogerontology, 2016-02) Yashin, Anatoliy I; Arbeev, Konstantin G; Arbeeva, Liubov S; Wu, Deqing; Akushevich, Igor; Kovtun, Mikhail; Yashkin, Arseniy; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana VIncreasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.Item Open Access stpm: an R package for stochastic process model.(BMC Bioinformatics, 2017-02-23) Zhbannikov, Ilya Y; Arbeev, Konstantin; Akushevich, Igor; Stallard, Eric; Yashin, Anatoliy IBACKGROUND: The Stochastic Process Model (SPM) represents a general framework for modeling the joint evolution of repeatedly measured variables and time-to-event outcomes observed in longitudinal studies, i.e., SPM relates the stochastic dynamics of variables (e.g., physiological or biological measures) with the probabilities of end points (e.g., death or system failure). SPM is applicable for analyses of longitudinal data in many research areas; however, there are no publicly available software tools that implement this methodology. RESULTS: We developed an R package stpm for the SPM-methodology. The package estimates several versions of SPM currently available in the literature including discrete- and continuous-time multidimensional models and a one-dimensional model with time-dependent parameters. Also, the package provides tools for simulation and projection of individual trajectories and hazard functions. CONCLUSION: In this paper, we present the first software implementation of the SPM-methodology by providing an R package stpm, which was verified through extensive simulation and validation studies. Future work includes further improvements of the model. Clinical and academic researchers will benefit from using the presented model and software. The R package stpm is available as open source software from the following links: https://cran.r-project.org/package=stpm (stable version) or https://github.com/izhbannikov/spm (developer version).