Browsing by Subject "Quantum information"
Results Per Page
Sort Options
Item Open Access High Fidelity Single Qubit Manipulation in a Microfabricated Ion Trap(2015) Mount, EmilyThe trapped atomic ion qubits feature desirable properties for use in a quantum computer such as long coherence times, high qubit readout fidelity, and universal logic gates. While these essential properties have been demonstrated, the ability to scale a trapped ion quantum system has not yet been shown. The challenge of scaling the system calls for methods to realize high-fidelity logic gates in scalable trap structures. Surface electrode ion traps, that are microfabricated from a silicon substrate, provide a scalable platform for trapping ion qubits only if high-fidelity operations are achievable in these structures. Here, we present a system for trapping and manipulating ions in a scalable surface trap. Trapping times exceeding 20 minutes without laser cooling, and heating rates as low as 0.8 quanta/ms indicate stable trapping conditions in these microtraps. Coherence times of more than one second verify adequate qubit and control field stability. We demonstrate low-error single-qubit gates performed using stimulated Raman transitions driven by lasers that are tightly focused on the ion qubit. Digital feedback loops are implemented to control the driving field's amplitude and frequency. Gate errors are measured using a randomized benchmarking protocol for single qubit gates, where residual amplitude error in the control beam is compensated using various pulse sequence techniques. Using pulse compensation, we demonstrate single qubit gates with an average error per randomized Clifford group gate of $3.6(3)\times10^{-4}$, which is below the fault-tolerant threshold for some error-correction schemes.
Item Open Access Improving Scalability of Trapped-Ion Quantum Computers Using Gate-Level Techniques(2023) Fang, ChaoTrapped ions provide a promising platform to build a practical quantum computer. Scaling the high performance of small systems to longer ion chains is a technical endeavor that benefits from both better hardware system design and gate-level control techniques. In this thesis, I discuss our work on building a small-scale trapped-ion quantum computing system that features stable laser beam control, low-crosstalk individual addressing and capability to implement high-fidelity multi-qubit gates.
We develop control techniques to extend the pack-leading fidelity of entangling gates in two-ion systems to longer chains. A major error source limiting entangling gate fidelities in ion chains is crosstalk between target and neighboring spectator qubits. We propose and demonstrate a crosstalk suppression scheme that eliminates all first-order crosstalk utilizing only local control of target qubits, as opposed to an existing scheme which requires control over all neighboring qubits. Using the scheme, we achieve a $99.5\%$ gate fidelity in a 5-ion chain. Complex quantum circuits can benefit from native multi-qubit gates such as the $N$-Toffoli gate, which substantially reduce the overhead cost from performing universal decomposition into single- and two-qubit gates. We take advantage of novel performance benefits of long ion chains to realize scalable Cirac-Zoller gates, which uses a simple pulse sequence to efficiently implement $N$-Toffoli gates. We demonstrate the Cirac-Zoller 3- and 4-Toffoli gates in a five-ion chain with higher fidelities than previous results using trapped ions. We also present the first experimental realization of a 5-Toffoli gate.
Item Open Access Integration of Advanced Optics for Trapped Ion Quantum Information Processing(2013) Noek, RachelTrapped ion systems are the leading candidate for quantum information processing because many of the critical components have already been demonstrated. Scaling trapped ion systems to large numbers of ions is currently believed possible, but much work remains to prove it. Microfabricated surface ion traps are increasing in popularity for their ease of mass production and their ability to manipulate individual ions and interact arbitrary pairs of ions. Even with the advent of scalable ion traps, detection of an individual ion trapped in a high vacuum poses a challenge. The internal state of the ion chosen for a quantum bit can be measured via exposure to a probe beam that causes one state to scatter light (a "bright" state), but not the other state (a "dark" state). In free space, a single ion acts like a point source that emits in all directions; a standard two inch lens system can only collect about 2% of the light emitted by the ion. Poor light collection results in a high error rate and slow determination of the internal state of the ion. Fast, high fidelity state detection is necessary for quantum error correction and loophole-free Bell experiments at short (less than 100\,km) distances, and high efficiency collection is necessary to rapidly interconnect separate quantum computers. We demonstrate state detection fidelities of 99%, 99.856(8)% and 99.915(7) % which correspond to detection times of 10.5, 28.1 and 99.8 us, respectively.
Item Open Access Quantum Error Correction for Physically Inspired Error Models(2021) Debroy, DriptoIn this dissertation we will discuss methods for creating error-robust logical qubits which have been optimized for trapped ion quantum computers. We will cover the basic building blocks of quantum information and develop an understanding of the standard techniques for building fault-tolerant quantum computers through the use of quantum error correcting codes. We will then focus on trapped ion systems, although many of the errors we consider also occur in other hardware implementations.
The majority of this dissertation is concerned with taking advantage of the structure found in experimental errors to maximize system performance. Using numerical simulation, we study the interplay of structured error models and quantum error correction. We then cover optimizations to the standard quantum error correction framework, both through gate compilation and code design, to correct coherent gate overrotation and dephasing errors. The latter section will also include experiments run on a quantum computer at the University of Maryland which verify the effectiveness of our ideas. We will end with a discussion of a method for quantum error detection in near-term systems by extending the flag gadget framework often used in quantum error correction.
Through this body of work we hope to provide evidence for the value, within the context of quantum error correction, of detailed understanding of our physical systems. Oftentimes, codes and protocols are designed without actual implementation in mind. While these studied often produce useful results, more effective methods can sometimes be found when the physics is kept in mind. Our hope is that this dissertation motivates further study of the physical error processes present in quantum computing architectures, as well as development of novel methods to correct them.