Browsing by Subject "RNA, Messenger"
Now showing 1 - 20 of 73
- Results Per Page
- Sort Options
Item Open Access A relationship between behavior, neurotrophin expression, and new neuron survival.(Proc Natl Acad Sci U S A, 2000-07-18) Li, XC; Jarvis, ED; Alvarez Borda, B; Lim, DA; Nottebohm, FThe high vocal center (HVC) controls song production in songbirds and sends a projection to the robust nucleus of the archistriatum (RA) of the descending vocal pathway. HVC receives new neurons in adulthood. Most of the new neurons project to RA and replace other neurons of the same kind. We show here that singing enhances mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the HVC of adult male canaries, Serinus canaria. The increased BDNF expression is proportional to the number of songs produced per unit time. Singing-induced BDNF expression in HVC occurs mainly in the RA-projecting neurons. Neuronal survival was compared among birds that did or did not sing during days 31-38 after BrdUrd injection. Survival of new HVC neurons is greater in the singing birds than in the nonsinging birds. A positive causal link between pathway use, neurotrophin expression, and new neuron survival may be common among systems that recruit new neurons in adulthood.Item Restricted A switch in the control of growth of the wing imaginal disks of Manduca sexta.(PLoS One, 2010-05-19) Tobler, Alexandra; Nijhout, H FrederikBACKGROUND: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. METHODOLOGY: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. PRINCIPAL FINDINGS: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, but not the brain, are required to drive continued growth. CONCLUSIONS: During the last larval instar imaginal disk growth becomes decoupled from somatic growth at the time that the endocrine events of metamorphosis are initiated. These regulatory changes ensure that disk growth continues uninterrupted when the nutritive and endocrine signals undergo the drastic changes associated with metamorphosis.Item Open Access An ERCC4 regulatory variant predicts grade-3 or -4 toxicities in patients with advanced non-small cell lung cancer treated by platinum-based therapy.(International journal of cancer, 2018-03) Zhang, Ruoxin; Jia, Ming; Xu, Yuan; Qian, Danwen; Wang, Mengyun; Zhu, Meiling; Sun, Menghong; Chang, Jianhua; Wei, QingyiPlatinum-based chemotherapy (PBC) in combination with the 3rd generation drugs is the first-line treatment for patients with advanced non-small cell lung cancer (NSCLC); however, the efficacy is severely hampered by grade 3-4 toxicities. Nucleotide excision repair (NER) pathway is the main mechanism of removing platinum-induced DNA adducts that contribute to the toxicity and outcome of PBC. We analyzed data from 710 Chinese NSCLC patients treated with PBC and assessed the associations of 25 potentially functional single nucleotide polymorphisms (SNPs) in nine NER core genes with overall, gastrointestinal and hematologic toxicities. Through a two-phase study, we found that ERCC4 rs1799798 was significantly associated with overall and gastrointestinal toxicities [all patients: GA/AA vs. GG, odds ratio (OR)adj =1.61 and 2.35, 95% confidence interval (CI)=1.11-2.33 and 1.25-4.41, and Padj =0.012 and 0.008, respectively]. Our prediction model for the overall toxicity incorporating rs1799798 demonstrated a significant increase in the area under the curve (AUC) value, compared to that for clinical factors only (all patients: AUC = 0.61 vs. 0.59, 95% CI = 0.57-0.65 vs. 0.55-0.63, P = 0.010). Furthermore, the ERCC4 rs1799798 A allele was associated with lower ERCC4 mRNA expression levels according to the expression quantitative trait loci (eQTL) analysis. Our study provided some new clue in future development of biomarkers for assessing toxicity and outcomes of platinum drugs in lung cancer treatment.Item Metadata only An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer.(PLoS One, 2008-04-02) Salter, Kelly H; Acharya, Chaitanya R; Walters, Kelli S; Redman, Richard; Anguiano, Ariel; Garman, Katherine S; Anders, Carey K; Mukherjee, Sayan; Dressman, Holly K; Barry, William T; Marcom, Kelly P; Olson, John; Nevins, Joseph R; Potti, AnilBACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.Item Open Access Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κB activation.(Journal of virology, 2012-10) Price, Alexander M; Tourigny, Jason P; Forte, Eleonora; Salinas, Raul E; Dave, Sandeep S; Luftig, Micah AEpstein-Barr virus (EBV) is an oncogenic human herpesvirus that dramatically reorganizes host gene expression to immortalize primary B cells. In this study, we analyzed EBV-regulated host gene expression changes following primary B-cell infection, both during initial proliferation and through transformation into lymphoblastoid cell lines (LCLs). While most EBV-regulated mRNAs were changed during the transition from resting, uninfected B cells through initial B-cell proliferation, a substantial number of mRNAs changed uniquely from early proliferation through LCL outgrowth. We identified constitutively and dynamically EBV-regulated biological processes, protein classes, and targets of specific transcription factors. Early after infection, genes associated with proliferation, stress responses, and the p53 pathway were highly enriched. However, the transition from early to long-term outgrowth was characterized by genes involved in the inhibition of apoptosis, the actin cytoskeleton, and NF-κB activity. It was previously thought that the major viral protein responsible for NF-κB activation, latent membrane protein 1 (LMP1), is expressed within 2 days after infection. Our data indicate that while this is true, LCL-level LMP1 expression and NF-κB activity are not evident until 3 weeks after primary B-cell infection. Furthermore, heterologous NF-κB activation during the first week after infection increased the transformation efficiency, while early NF-κB inhibition had no effect on transformation. Rather, inhibition of NF-κB was not toxic to EBV-infected cells until LMP1 levels and NF-κB activity were high. These data collectively highlight the dynamic nature of EBV-regulated host gene expression and support the notion that early EBV-infected proliferating B cells have a fundamentally distinct growth and survival phenotype from that of LCLs.Item Open Access Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.(Nature, 2002-12-05) Okazaki, Y; Furuno, M; Kasukawa, T; Adachi, J; Bono, H; Kondo, S; Nikaido, I; Osato, N; Osato, N; Saito, R; Suzuki, H; Yamanaka, I; Kiyosawa, H; Yagi, K; Tomaru, Y; Hasegawa, Y; Nogami, A; Schönbach, C; Gojobori, T; Baldarelli, R; Hill, DP; Bult, C; Hume, DA; Hume, DA; Quackenbush, J; Schriml, LM; Kanapin, A; Matsuda, H; Batalov, S; Beisel, KW; Blake, JA; Bradt, D; Brusic, V; Chothia, C; Corbani, LE; Cousins, S; Dalla, E; Dragani, TA; Fletcher, CF; Forrest, A; Frazer, KS; Gaasterland, T; Gariboldi, M; Gissi, C; Godzik, A; Gough, J; Grimmond, S; Gustincich, S; Hirokawa, N; Jackson, IJ; Jarvis, ED; Kanai, A; Kawaji, H; Kawasawa, Y; Kedzierski, RM; King, BL; Konagaya, A; Kurochkin, IV; Lee, Y; Lenhard, B; Lyons, PA; Maglott, DR; Maltais, L; Marchionni, L; McKenzie, L; Miki, H; Nagashima, T; Numata, K; Okido, T; Pavan, WJ; Pertea, G; Pesole, G; Petrovsky, N; Pillai, R; Pontius, JU; Qi, D; Ramachandran, S; Ravasi, T; Reed, JC; Reed, DJ; Reid, J; Ring, BZ; Ringwald, M; Sandelin, A; Schneider, C; Semple, CAM; Setou, M; Shimada, K; Sultana, R; Takenaka, Y; Taylor, MS; Teasdale, RD; Tomita, M; Verardo, R; Wagner, L; Wahlestedt, C; Wang, Y; Watanabe, Y; Wells, C; Wilming, LG; Wynshaw-Boris, A; Yanagisawa, M; Yang, I; Yang, L; Yuan, Z; Zavolan, M; Zhu, Y; Zimmer, A; Carninci, P; Hayatsu, N; Hirozane-Kishikawa, T; Konno, H; Nakamura, M; Sakazume, N; Sato, K; Shiraki, T; Waki, K; Kawai, J; Aizawa, K; Arakawa, T; Fukuda, S; Hara, A; Hashizume, W; Imotani, K; Ishii, Y; Itoh, M; Kagawa, I; Miyazaki, A; Sakai, K; Sasaki, D; Shibata, K; Shinagawa, A; Yasunishi, A; Yoshino, M; Waterston, R; Lander, ES; Rogers, J; Birney, E; Hayashizaki, Y; FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I & II TeamOnly a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.Item Open Access Antagonists of the system L neutral amino acid transporter (LAT) promote endothelial adhesivity of human red blood cells.(Thrombosis and haemostasis, 2017-06) Dosier, Laura Beth Mann; Premkumar, Vikram J; Zhu, Hongmei; Akosman, Izzet; Wempe, Michael F; McMahon, Timothy JThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.Item Open Access Anti-fibrotic effects of different sources of MSC in bleomycin-induced lung fibrosis in C57BL6 male mice.(Respirology (Carlton, Vic.), 2021-02) Periera-Simon, Simone; Xia, Xiaomei; Catanuto, Paola; Coronado, Ramon; Kurtzberg, Joanne; Bellio, Michael; Lee, Yee-Shuan; Khan, Aisha; Smith, Robin; Elliot, Sharon J; Glassberg, Marilyn KBackground and objective
IPF is a fatal and debilitating lung disorder increasing in incidence worldwide. To date, two approved treatments only slow disease progression, have multiple side effects and do not provide a cure. MSC have promising therapeutic potential as a cell-based therapy for many lung disorders based on the anti-fibrotic properties of the MSC.Methods
Critical questions remain surrounding the optimal source, timing and efficacy of cell-based therapies. The present study examines the most effective sources of MSC. Human MSC were derived from adipose, WJ, chorionic membrane (CSC) and chorionic villi (CVC). MSC were injected into the ageing mouse model of BLM-induced lung fibrosis.Results
All sources decreased Aschroft and hydroxyproline levels when injected into BLM-treated mice at day 10 with the exception of CSC cells that did not change hydroxyproline levels. There were also decreases in mRNA expression of αv -integrin and TNFα in all sources except CSC. Only ASC- and WJ-derived cells reduced AKT and MMP-2 activation, while Cav-1 was increased by ASC treatment as previously reported. BLM-induced miR dysregulation of miR-29 and miR-199 was restored only by ASC treatment.Conclusion
Our data suggest that sources of MSC may differ in the pathway(s) involved in repair.Item Open Access Association between the ERCC5 Asp1104His polymorphism and cancer risk: a meta-analysis.(PloS one, 2012-01) Zhu, Mei-Ling; Wang, Mengyun; Cao, Zhi-Gang; He, Jing; Shi, Ting-Yan; Xia, Kai-Qin; Qiu, Li-Xin; Wei, Qing-YiBACKGROUND: Excision repair cross complementing group 5 (ERCC5 or XPG) plays an important role in regulating DNA excision repair, removal of bulky lesions caused by environmental chemicals or UV light. Mutations in this gene cause a rare autosomal recessive syndrome, and its functional single nucleotide polymorphisms (SNPs) may alter DNA repair capacity phenotype and cancer risk. However, a series of epidemiological studies on the association between the ERCC5 Asp1104His polymorphism (rs17655, G>C) and cancer susceptibility generated conflicting results. METHODOLOGY/PRINCIPAL FINDINGS: To derive a more precise estimation of the association between the ERCC5 Asp1104His polymorphism and overall cancer risk, we performed a meta-analysis of 44 published case-control studies, in which a total of 23,490 cases and 27,168 controls were included. To provide additional biological plausibility, we also assessed the genotype-gene expression correlation from the HapMap phase II release 23 data with 270 individuals from 4 ethnic populations. When all studies were pooled, we found no statistical evidence for a significantly increased cancer risk in the recessive genetic models (His/His vs. Asp/Asp: OR = 0.99, 95% CI: 0.92-1.06, P = 0.242 for heterogeneity or His/His vs. Asp/His + Asp/Asp: OR = 0.98, 95% CI: 0.93-1.03, P = 0.260 for heterogeneity), nor in further stratified analyses by cancer type, ethnicity, source of controls and sample size. In the genotype-phenotype correlation analysis from 270 individuals, we consistently found no significant correlation of the Asp1104His polymorphism with ERCC5 mRNA expression. CONCLUSIONS/SIGNIFICANCE: This meta-analysis suggests that it is unlikely that the ERCC5 Asp1104His polymorphism may contribute to individual susceptibility to cancer risk.Item Open Access Association of LEP G2548A and LEPR Q223R polymorphisms with cancer susceptibility: evidence from a meta-analysis.(PloS one, 2013-01) He, Jing; Xi, Bo; Ruiter, Rikje; Shi, Ting-Yan; Zhu, Mei-Ling; Wang, Meng-Yun; Li, Qiao-Xin; Zhou, Xiao-Yan; Qiu, Li-Xin; Wei, Qing-YiBACKGROUND: Numerous epidemiological studies have examined associations of genetic variations in LEP (G2548A, -2548 nucleotide upstream of the ATG start site) and LEPR (Q223R, nonsynonymous SNP in exon 6) with cancer susceptibility; however, the findings are inconsistent. Therefore, we performed a meta-analysis to comprehensively evaluate such associations. METHODS: We searched published literature from MEDLINE, EMBASE, Web of Science and CBM for eligible publications. We also assessed genotype-based mRNA expression data from HapMap for rs7799039 (G2548A) and rs1137101 (Q223R) in normal cell lines derived from 270 subjects with different ethnicities. RESULTS: The final analysis included 16 published studies of 6569 cases and 8405 controls for the LEP G2548A and 19 studies of 7504 cases and 9581 controls for the LEPR Q223R. Overall, LEP G2548A was statistically significantly associated with an increased risk of overall cancer (AA vs. GG: OR=1.27, 95% CI=1.05-1.54; recessive model: OR=1.19, 95% CI=1.00-1.41). Further stratifications by cancer type showed an increased risk for prostate cancer (recessive model: OR=1.26, 95% CI=1.05-1.51) but not for other cancers. For LEPR Q223R, no statistical evidence for an association with risk of cancer was found for all; however, further stratification by ethnicity showed an increased risk for Africans but not for other ethnicities. No significantly differences in LEP and LEPR mRNA expression were found among genotypes or by ethnicity. CONCLUSIONS: Despite some limitations, this meta-analysis found some statistical evidence for an association between the LEP 2548AA genotype and overall risk of cancer, particularly for prostate cancer, but given this variant did not have an effect on mRNA expression, this association warrants additional validation in large and well-designed studies.Item Open Access Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs.(Scientific reports, 2017-03-17) Pan, Yongchu; Liu, Hongliang; Wang, Yanru; Kang, Xiaozheng; Liu, Zhensheng; Owzar, Kouros; Han, Younghun; Su, Li; Wei, Yongyue; Hung, Rayjean J; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S; Caporaso, Neil; Teresa Landi, Maria; Heinrich, Joachim; Risch, Angela; Wu, Xifeng; Ye, Yuanqing; Christiani, David C; Amos, Christopher I; Wei, QingyimRNA splicing is an important mechanism to regulate mRNA expression. Abnormal regulation of this process may lead to lung cancer. Here, we investigated the associations of 11,966 single-nucleotide polymorphisms (SNPs) in 206 mRNA splicing-related genes with lung cancer risk by using the summary data from six published genome-wide association studies (GWASs) of Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16,838 controls) and another two lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls). We found that a total of 12 significant SNPs with false discovery rate (FDR) ≤0.05 were mapped to one novel gene PRPF6 and two previously reported genes (DHX16 and LSM2) that were also confirmed in this study. The six novel SNPs in PRPF6 were in high linkage disequilibrium and associated with PRPF6 mRNA expression in lymphoblastoid cells from 373 Europeans in the 1000 Genomes Project. Taken together, our studies shed new light on the role of mRNA splicing genes in the development of lung cancer.Item Open Access Associations of genotypes and haplotypes of IL-17 with risk of gastric cancer in an eastern Chinese population.(Oncotarget, 2016-12) Zhou, Fei; Qiu, Li-Xin; Cheng, Lei; Wang, Meng-Yun; Li, Jin; Sun, Meng-Hong; Yang, Ya-Jun; Wang, Jiu-Cun; Jin, Li; Wang, Ya-Nong; Wei, Qing-YiInterleukin-17 plays a crucial role in inflammation-related carcinogenesis. We hypothesize that genetic variants in IL-17 are associated with gastric cancer (GCa) risk, and we genotyped five potentially functional single nucleotide polymorphisms (SNPs) (rs1974226 G > A, rs2275913 A > G, rs3819024 A > G, rs4711998 A > G, and rs8193036 C > T) of IL-17 in 1121 GCa patients and 1216 cancer-free controls in an eastern Chinese population. Logistic regression analysis was used to calculate odds ratios (OR) and 95% confidence intervals (CI). Meta-analysis and genotype-mRNA expression correlation were performed to further validate positive associations. We found that an increased GCa risk was independently associated with rs1974226 (adjusted OR = 2.60, 95% CI = 1.27-5.32 for AA vs. GG + GA) and rs2275913 (adjusted OR = 1.33, 95% CI = 1.03-1.72 for GA + AA vs. GG), while a decreased GCa risk was independently associated with rs3819024 (adjusted OR = 0.72, 95% CI = 0.54-0.96 for GG vs. AA + AG). Additional meta-analyses confirmed the observed risk association with rs2275913. We also found that two IL-17 haplotypes (G-G-G-A-C) and (A-G-G-A-C) (in the order of rs1974226, rs2275913, rs3819024, rs4711998 and rs8193036) were associated with a reduced GCa risk (adjusted OR = 0.64, 95% CI = 0.46-0.89 and adjusted OR = 0.38, 95% CI = 0.17-0.81, respectively). However, the expression Quantitative Trait Locus (eQTL) analysis for the genotype-phenotype correlation did not find mRNA expression changes associated with either the genotypes. In conclusions, genetic variants of IL-17 are likely to be associated with risk of GCa, and additional larger studies with functional validation are needed to explore the molecular mechanisms underlying the observed associations.Item Open Access cAMP stimulates transcription of the beta 2-adrenergic receptor gene in response to short-term agonist exposure.(Proc Natl Acad Sci U S A, 1989-07) Collins, S; Bouvier, M; Bolanowski, MA; Caron, MG; Lefkowitz, RJIn addition to conveying cellular responses to an effector molecule, receptors are often themselves regulated by their effectors. We have demonstrated that epinephrine modulates both the rate of transcription of the beta 2-adrenergic receptor (beta 2AR) gene and the steady-state level of beta 2AR mRNA in DDT1MF-2 cells. Short-term (30 min) exposure to epinephrine (100 nM) stimulates the rate of beta 2AR gene transcription, resulting in a 3- to 4-fold increase in steady-state beta 2AR mRNA levels. These effects are mimicked by 1 mM N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2cAMP) or foskolin but not by phorbol esters. The half-life of the beta 2AR mRNA after addition of actinomycin D (46.7 +/- 10.2 min; mean +/- SEM; n = 5) remained unchanged after 30 min of epinephrine treatment (46.8 +/- 10.6 min; mean +/- SEM; n = 4), indicating that a change in transcription rate is the predominant factor responsible for the increase of beta 2AR mRNA. Whereas brief exposure to epinephrine or Bt2cAMP does not significantly affect the total number of cellular beta 2ARs (assessed by ligand binding), continued exposure results in a gradual decline in beta 2AR number to approximately 20% (epinephrine) or approximately 45% (Bt2cAMP) of the levels in control cells by 24 hr. Similar decreases in agonist-stimulated adenylyl cyclase activity are observed. This loss of receptors with prolonged agonist exposure is accompanied by a 50% reduction in beta 2AR mRNA. Transfection of the beta 2AR promoter region cloned onto a reporter gene (bacterial chloramphenicol acetyltransferase) allowed demonstration of a 2- to 4-fold induction of transcription by agents that elevate cAMP levels, such as forskolin or phosphodiesterase inhibitors. These results establish the presence of elements within the proximal promoter region of the beta 2AR gene responsible for the transcriptional enhancing activity of cAMP and demonstrate that beta 2AR gene expression is regulated by a type of feedback mechanism involving the second messenger cAMP.Item Open Access CASP7 variants modify susceptibility to cervical cancer in Chinese women.(Scientific reports, 2015-01) Shi, Ting-Yan; He, Jing; Wang, Meng-Yun; Zhu, Mei-Ling; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Wu, Xiaohua; Cheng, Xi; Wei, QingyiPolymorphisms in Caspase-7 (CASP7) may modulate the programmed cell death and thus contribute to cervical cancer risk. In this case-control study of 1,486 cervical cancer cases and 1,301 controls, we investigated associations between four potentially functional polymorphisms in CASP7 and cervical cancer risk and evaluated their locus-locus interaction effects on the risk. The genotype-phenotype correlation was performed by a generalized linear regression model. We found that the rs4353229 polymorphism was associated with cervical cancer risk (under a recessive model: crude OR = 1.20, 95% CI = 1.02-1.40). Compared with the TT genotype, the rs10787498GT genotype was associated with an increased cervical cancer risk (adjusted OR = 1.19, 95% CI = 1.00-1.41). Combination analysis showed that subjects with four putative risk genotypes had a 1.54-fold increased cancer risk, compared with those who carried three or less putative risk genotypes. We also observed significant locus-locus joint effects on the risk, which may be mediated by the polymorphisms regulating CASP7 mRNA expression. Subsequent multifactor dimensionality reduction and classification and regression tree analyses indicated that the CASP7 genotypes might have a locus-locus interaction effect that modulated cervical cancer risk. Out data suggest that CASP7 polymorphisms may interact to modify cervical cancer risk by a possible mechanism of regulating CASP7 mRNA expression.Item Open Access Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.(J Comp Neurol, 2015-04-15) Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich DOnly a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.Item Open Access Critical role of TNF-α in cerebral aneurysm formation and progression to rupture.(J Neuroinflammation, 2014-04-16) Starke, Robert M; Chalouhi, Nohra; Jabbour, Pascal M; Tjoumakaris, Stavropoula I; Gonzalez, L Fernando; Rosenwasser, Robert H; Wada, Kosuke; Shimada, Kenji; Hasan, David M; Greig, Nigel H; Owens, Gary K; Dumont, Aaron SBACKGROUND: Alterations in TNF-α expression have been associated with cerebral aneurysms, but a direct role in formation, progression, and rupture has not been established. METHODS: Cerebral aneurysms were induced through hypertension and a single stereotactic injection of elastase into the basal cistern in mice. To test the role of TNF-α in aneurysm formation, aneurysms were induced in TNF-α knockout mice and mice pretreated with the synthesized TNF-α inhibitor 3,6'dithiothalidomide (DTH). To assess the role of TNF-α in aneurysm progression and rupture, DTH was started 6 days after aneurysm induction. TNF-α expression was assessed through real-time PCR and immunofluorescence staining. RESULTS: TNF-α knockout mice and those pre-treated with DTH had significantly decreased incidence of aneurysm formation and rupture as compared to sham mice. As compared with sham mice, TNF-α protein and mRNA expression was not significantly different in TNF-α knockout mice or those pre-treated with DTH, but was elevated in unruptured and furthermore in ruptured aneurysms. Subarachnoid hemorrhage (SAH) occurred between 7 and 21 days following aneurysm induction. To ensure aneurysm formation preceded rupture, additional mice underwent induction and sacrifice after 7 days. Seventy-five percent had aneurysm formation without evidence of SAH. Initiation of DTH treatment 6 days after aneurysm induction did not alter the incidence of aneurysm formation, but resulted in aneurysmal stabilization and a significant decrease in rupture. CONCLUSIONS: These data suggest a critical role of TNF-α in the formation and rupture of aneurysms in a model of cerebral aneurysm formation. Inhibitors of TNF-α could be beneficial in preventing aneurysmal progression and rupture.Item Open Access Cryptococcal cell morphology affects host cell interactions and pathogenicity.(PLoS Pathog, 2010-06-17) Okagaki, Laura H; Strain, Anna K; Nielsen, Judith N; Charlier, Caroline; Baltes, Nicholas J; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, KirstenCryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.Item Open Access dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.(PLoS Genet, 2015-12) Kaplan, RE; Chen, Y; Moore, BT; Jordan, JM; Maxwell, CS; Schindler, AJ; Baugh, LRNutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development.Item Open Access Detection of single mRNAs in individual cells of the auditory system.(Hearing research, 2018-09) Salehi, Pezhman; Nelson, Charlie N; Chen, Yingying; Lei, Debin; Crish, Samuel D; Nelson, Jovitha; Zuo, Hongyan; Bao, JianxinGene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.Item Open Access Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials.(Translational research : the journal of laboratory and clinical medicine, 2022-04) Whitley, Jill; Zwolinski, Christopher; Denis, Christian; Maughan, Maureen; Hayles, Leonie; Clarke, David; Snare, Meghan; Liao, Hong; Chiou, Sean; Marmura, Tina; Zoeller, Holly; Hudson, Ben; Peart, John; Johnson, Monica; Karlsson, Amelia; Wang, Yunfei; Nagle, Cynthia; Harris, Cherell; Tonkin, Daniel; Fraser, Stephanie; Capiz, Lieza; Zeno, Christina L; Meli, Yvonne; Martik, Diana; Ozaki, Daniel A; Caparoni, Amy; Dickens, Jason E; Weissman, Drew; Saunders, Kevin O; Haynes, Barton F; Sempowski, Gregory D; Denny, Thomas N; Johnson, Matthew RThe remarkable success of SARS CoV-2 mRNA-based vaccines and the ensuing interest in mRNA vaccines and therapeutics have highlighted the need for a scalable clinical-enabling manufacturing process to produce such products, and robust analytical methods to demonstrate safety, potency, and purity. To date, production processes have either not been disclosed or are bench-scale in nature and cannot be readily adapted to clinical and commercial scale production. To address these needs, we have advanced an aqueous-based scalable process that is readily adaptable to GMP-compliant manufacturing, and developed the required analytical methods for product characterization, quality control release, and stability testing. We also have demonstrated the products produced at manufacturing scale under such approaches display good potency and protection in relevant animal models with mRNA products encoding both vaccine immunogens and antibodies. Finally, we discuss continued challenges in raw material identification, sourcing and supply, and the cold chain requirements for mRNA therapeutic and vaccine products. While ultimate solutions have yet to be elucidated, we discuss approaches that can be taken that are aligned with regulatory guidance.