Browsing by Subject "Rabbits"
Now showing 1 - 20 of 21
- Results Per Page
- Sort Options
Item Open Access A sublingual nanofiber vaccine to prevent urinary tract infections.(Science advances, 2022-11) Kelly, Sean H; Votaw, Nicole L; Cossette, Benjamin J; Wu, Yaoying; Shetty, Shamitha; Shores, Lucas S; Issah, Luqman A; Collier, Joel HUrinary tract infections (UTIs) are a major public health problem affecting millions of individuals each year. Recurrent UTIs are managed by long-term antibiotic use, making the alarming rise of antibiotic resistance a substantial threat to future UTI treatment. Extended antibiotic regimens may also have adverse effects on the microbiome. Here, we report the use of a supramolecular vaccine to provide long-term protection against uropathogenic Escherichia coli, which cause 80% of uncomplicated UTIs. We designed mucus-penetrating peptide-polymer nanofibers to enable sublingual (under the tongue) vaccine delivery and elicit antibody responses systemically and in the urogenital tract. In a mouse model of UTI, we demonstrate equivalent efficacy to high-dose oral antibiotics but with significantly less perturbation of the gut microbiome. We also formulate our vaccine as a rapid-dissolving sublingual tablet that raises response in mice and rabbits. Our approach represents a promising alternative to antibiotics for the treatment and prevention of UTIs.Item Open Access Association of an axonally transported polypeptide (H) with 100-A filaments. Use of immunoaffinity electron microscope grids.(The Journal of cell biology, 1980-06) Willard, M; Simon, C; Baitinger, C; Levine, J; Skene, PPolypeptide H (mol wt 195,000) is axonally transported in rabbit retinal ganglion cells at a velocity of 0.7--1.1 mm/d, i.e., in the most slowly moving of the five transport groups described in these neurons. To identify the organelle with which H is associated, we purified H, prepared antibodies directed against it, and adsorbed the antibodies onto Formvar-coated electron microscope grids. When the resulting "immuno-affinity grids" were incubated with extracts of spinal cord and then examined in the electron microscope, they contained as many as 100 times more 100-A filaments than did grids coated similarly with nonimmune IgG. The ability of the anti-H IgG to specifically adsorb filaments to grids was completely blocked by incubating the IgG with polypeptide H. The 100-A filaments adsorbed to anti-H immunoaffinity grids could be specifically decorated by incubating them with anti-H IgG. These observations demonstrate that H antigens (and most likely H itself) are associated with 100-A neurofilaments. In addition, they suggest that the use of immunoaffinity grids may be a useful approach for determining the organelle associations of polypeptides.Item Open Access Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.(The Journal of cell biology, 1981-04) Skene, JH; Willard, MIn an effort to determine whether the "growth state" and the "mature state" of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the "GAP hypothesis" that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a "synaptogenic state" characterized by the transport of GAP-23 but not GAP-43, and an "axon elongation state" requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.Item Open Access Cerebral oxygenation and optimal vascular brain organization.(J R Soc Interface, 2015-06-06) Hadjistassou, Constantinos; Bejan, Adrian; Ventikos, YiannisThe cerebral vascular network has evolved in such a way so as to minimize transport time and energy expenditure. This is accomplished by a subtle combination of the optimal arrangement of arteries, arterioles and capillaries and the transport mechanisms of convection and diffusion. Elucidating the interaction between cerebral vascular architectonics and the latter physical mechanisms can catalyse progress in treating cerebral pathologies such as stroke, brain tumours, dementia and targeted drug delivery. Here, we show that brain microvascular organization is predicated on commensurate intracapillary oxygen convection and parenchymal diffusion times. Cross-species grey matter results for the rat, cat, rabbit and human reveal very good correlation between the cerebral capillary and tissue mean axial oxygen convective and diffusion time intervals. These findings agree with the constructal principle.Item Open Access EAE cerebrospinal fluid augments in vitro phagocytosis and metabolism of CNS myelin by macrophages.(J Neurosci Res, 1992-07) Sommer, MA; Forno, LS; Smith, MEPrevious studies from this laboratory have shown that CNS myelin is phagocytized and metabolized by cultured rat macrophages to a much larger extent when myelin is pretreated with serum containing antibodies to myelin constituents than when it is left untreated or pretreated with non-specific serum. In this study the effect of cerebrospinal fluid (CSF) from rabbits with experimental allergic encephalomyelitis (EAE) in promoting myelin phagocytosis was examined. Fourteen rabbits were immunized with purified myelin in Freund's complete adjuvant, seven of which developed clinical EAE symptoms. Serum and CSF were collected from EAE and control rabbits, and the CSF was centrifuged to remove cells. Sera and CSF from these rabbits and from Freund's adjuvant-immunized controls and untreated controls were measured for IgG content by radial diffusion assay, their myelin antibody characteristics were analyzed by immunoblots, and the ability of these serum and CSF samples to promote myelin phagocytosis when used for myelin opsonization was examined. The ability of a CSF sample to enhance radioactive myelin uptake and phagocytosis by cultured macrophages as measured by the appearance of radioactive cholesterol ester was linearly proportional to its total IgG titer, and correlated approximately both with clinical symptoms of the animal and the presence of antibody against the myelin constituents myelin basic protein, proteolipid protein, and galactocerebroside. The cholesterol esterification activities of EAE sera correlated to a lesser extent with IgG levels and clinical symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)Item Open Access Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery.(J Clin Invest, 1999-07) Maurice, JP; Hata, JA; Shah, AS; White, DC; McDonald, PH; Dolber, PC; Wilson, KH; Lefkowitz, RJ; Glower, DD; Koch, WJExogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.Item Open Access G protein signaling and vein graft intimal hyperplasia: reduction of intimal hyperplasia in vein grafts by a Gbetagamma inhibitor suggests a major role of G protein signaling in lesion development.(Arterioscler Thromb Vasc Biol, 1998-08) Davies, MG; Fulton, Gregory J; Hagen, Per-Otto Frode; Huynh, Tam; Koch, Walter J; Lefkowitz, Robert J; Svendsen, EVein grafting results in the development of intimal hyperplasia with accompanying changes in guanine nucleotide-binding (G) protein expression and function. Several serum mitogens that act through G protein-coupled receptors, such as lysophosphatidic acid, stimulate proliferative pathways that are dependent on the G protein betagamma subunit (Gbetagamma)-mediated activation of p21ras. This study examines the role of Gbetagamma signaling in intimal hyperplasia by targeting a gene encoding a specific Gbetagamma inhibitor in an experimental rabbit vein graft model. This inhibitor, the carboxyl terminus of the beta-adrenergic receptor kinase (betaARK(CT)), contains a Gbetagamma-binding domain. Vein graft intimal hyperplasia was significantly reduced by 37% (P<0.01), and physiological studies demonstrated that the normal alterations in G protein coupling phenotypically seen in this model were blocked by betaARK(CT) treatment. Thus, it appears that Gbetagamma-mediated pathways play a major role in intimal hyperplasia and that targeting inhibitors of Gbetagamma signaling offers novel intraoperative therapeutic modalities to inhibit the development of vein graft intimal hyperplasia and subsequent vein graft failure.Item Open Access Human Umbilical Cord Blood Cells Ameliorate Motor Deficits in Rabbits in a Cerebral Palsy Model.(Developmental neuroscience, 2015-01) Drobyshevsky, Alexander; Cotten, C Michael; Shi, Zhongjie; Luo, Kehuan; Jiang, Rugang; Derrick, Matthew; Tracy, Elizabeth T; Gentry, Tracy; Goldberg, Ronald N; Kurtzberg, Joanne; Tan, SidharthaCerebral palsy (CP) has a significant impact on both patients and society, but therapy is limited. Human umbilical cord blood cells (HUCBC), containing various stem and progenitor cells, have been used to treat various brain genetic conditions. In small animal experiments, HUCBC have improved outcomes after hypoxic-ischemic (HI) injury. Clinical trials using HUCBC are underway, testing feasibility, safety and efficacy for neonatal injury as well as CP. We tested HUCBC therapy in a validated rabbit model of CP after acute changes secondary to HI injury had subsided. Following uterine ischemia at 70% gestation, we infused HUCBC into newborn rabbit kits with either mild or severe neurobehavioral changes. Infusion of high-dose HUCBC (5 × 10(6) cells) dramatically altered the natural history of the injury, alleviating the abnormal phenotype including posture, righting reflex, locomotion, tone, and dystonia. Half the high dose showed lesser but still significant improvement. The swimming test, however, showed that joint function did not restore to naïve control function in either group. Tracing HUCBC with either MRI biomarkers or PCR for human DNA found little penetration of HUCBC in the newborn brain in the immediate newborn period, suggesting that the beneficial effects were not due to cellular integration or direct proliferative effects but rather to paracrine signaling. This is the first study to show that HUCBC improve motor performance in a dose-dependent manner, perhaps by improving compensatory repair processes.Item Open Access In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction.(Circulation, 2001-03-06) Shah, AS; White, DC; Emani, S; Kypson, AP; Lilly, RE; Wilson, K; Glower, DD; Lefkowitz, RJ; Koch, WJBACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.Item Open Access Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart : prospects for molecular ventricular assistance.(Circulation, 2000-02-01) Glower, Donald D Jr; Hata, Jonathan Andrew; Koch, Walter J; Kypson, Alan P; Lefkowitz, Robert J; Lilly, R Eric; Pippen, Anne; Shah, AS; Silvestry, Scott Christopher; Tai, OliverBACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.Item Restricted Magnetic resonance water proton relaxation in protein solutions and tissue: T(1rho) dispersion characterization.(PLoS One, 2010-01-05) Chen, Enn-Ling; Kim, Raymond JBACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).Item Open Access Monoclonal antibodies reveal receptor specificity among G-protein-coupled receptor kinases.(Proc Natl Acad Sci U S A, 1996-07-23) Oppermann, M; Diversé-Pierluissi, M; Drazner, MH; Dyer, SL; Freedman, NJ; Peppel, KC; Lefkowitz, RJGuanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization of G-protein-coupled receptors. Herein we describe the generation of monoclonal antibodies (mAbs) that specifically react with GRK2 and GRK3 or with GRK4, GRK5, and GRK6. They are used in several different receptor systems to identify the kinases that are responsible for receptor phosphorylation and desensitization. The ability of these reagents to inhibit GRK- mediated receptor phosphorylation is demonstrated in permeabilized 293 cells that overexpress individual GRKs and the type 1A angiotensin II receptor. We also use this approach to identify the endogenous GRKs that are responsible for the agonist-induced phosphorylation of epitope-tagged beta2- adrenergic receptors (beta2ARs) overexpressed in rabbit ventricular myocytes that are infected with a recombinant adenovirus. In these myocytes, anti-GRK2/3 mAbs inhibit isoproterenol-induced receptor phosphorylation by 77%, while GRK4-6-specific mAbs have no effect. Consistent with the operation of a betaAR kinase-mediated mechanism, GRK2 is identified by immunoblot analysis as well as in a functional assay as the predominant GRK expressed in these cells. Microinjection of GRK2/3-specific mAbs into chicken sensory neurons, which have been shown to express a GRK3-like protein, abolishes desensitization of the alpha2AR-mediated calcium current inhibition. The intracellular inhibition of endogenous GRKs by mAbs represents a novel approach to the study of receptor specificities among GRKs that should be widely applicable to many G-protein-coupled receptors.Item Restricted MRP3: a molecular target for human glioblastoma multiforme immunotherapy.(BMC Cancer, 2010-09-01) Kuan, Chien-Tsun; Wakiya, Kenji; Herndon, James E; Lipp, Eric S; Pegram, Charles N; Riggins, Gregory J; Rasheed, Ahmed; Szafranski, Scott E; McLendon, Roger E; Wikstrand, Carol J; Bigner, Darell DBACKGROUND: Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3). METHODS: We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS. RESULTS: Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed MRP3 mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined MRP3-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of MRP3 RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002). CONCLUSIONS: Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.Item Open Access Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits.(PloS one, 2018-01) de Cesar Netto, Cesar; Godoy-Santos, Alexandre Leme; Augusto Pontin, Pedro; Natalino, Renato Jose Mendonça; Pereira, Cesar Augusto Martins; Lima, Francisco Diego de Oliveira; da Fonseca, Lucas Furtado; Staggers, Jackson Rucker; Cavinatto, Leonardo Muntada; Schon, Lew Charles; de Camargo, Olavo Pires; Fernandes, Túlio DinizOur goal was to develop a novel technique for inducing Achilles tendinopathy in animal models which more accurately represents the progressive histological and biomechanical characteristic of chronic Achilles tendinopathy in humans. In this animal research study, forty-five rabbits were randomly assigned to three groups and given bilateral Achilles injections. Low dose (LD group) (n = 18) underwent a novel technique with three low-dose (0.1mg) injections of collagenase that were separated by two weeks, the high dose group (HD) (n = 18) underwent traditional single high-dose (0.3mg) injections, and the third group were controls (n = 9). Six rabbits were sacrificed from each experimental group (LD and HD) at 10, 12 and 16 weeks. Control animals were sacrificed after 16 weeks. Histological and biomechanical properties were then compared in all three groups. At 10 weeks, Bonar score and tendon cross sectional area was highest in HD group, with impaired biomechanical properties compared to LD group. At 12 weeks, Bonar score was higher in LD group, with similar biomechanical findings when compared to HD group. After 16 weeks, Bonar score was significantly increased for both LD group (11,8±2,28) and HD group (5,6±2,51), when compared to controls (2±0,76). LD group showed more pronounced histological and biomechanical findings, including cross sectional area of the tendon, Young's modulus, yield stress and ultimate tensile strength. In conclusion, Achilles tendinopathy in animal models that were induced by serial injections of low-dose collagenase showed more pronounced histological and biomechanical findings after 16 weeks than traditional techniques, mimicking better the progressive and chronic characteristic of the tendinopathy in humans.Item Open Access Novel Treatment of Cryptococcal Meningitis via Neurapheresis Therapy.(The Journal of infectious diseases, 2018-08) Smilnak, Gordon J; Charalambous, Lefko T; Cutshaw, Drew; Premji, Alykhan M; Giamberardino, Charles D; Ballard, Christi G; Bartuska, Andrew P; Ejikeme, Tiffany U; Sheng, Huaxin; Verbick, Laura Zitella; Hedstrom, Blake A; Pagadala, Promila C; McCabe, Aaron R; Perfect, John R; Lad, Shivanand PCryptococcal meningitis (CM) has emerged as the most common life-threatening fungal meningitis worldwide. Current management involves a sequential, longitudinal regimen of antifungals; despite a significant improvement in survival compared with uniform mortality without treatment, this drug paradigm has not led to a consistent cure. Neurapheresis therapy, extracorporeal filtration of yeasts from cerebrospinal fluid (CSF) in infected hosts, is presented here as a novel, one-time therapy for CM. In vitro filtration of CSF through this platform yielded a 5-log reduction in concentration of the yeast and a 1-log reduction in its polysaccharide antigen over 24 hours. Additionally, an analogous closed-loop system achieved 97% clearance of yeasts from the subarachnoid space in a rabbit model over 4-6 hours. This is the first publication demonstrating the direct ability to rapidly clear, both in vitro and in vivo, the otherwise slowly removed fungal pathogen that directly contributes to the morbidity and mortality seen in CM.Item Open Access Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes.(J Clin Invest, 1997-01-15) Drazner, MH; Peppel, KC; Dyer, S; Grant, AO; Koch, WJ; Lefkowitz, RJOur laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.Item Open Access Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction.(Proc Natl Acad Sci U S A, 2000-05-09) White, DC; Hata, JA; Shah, AS; Glower, DD; Lefkowitz, RJ; Koch, WJWhen the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of betaARK1 (betaARKct), that the desensitization and down-regulation of betaARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical betaAR abnormalities seen in human heart failure, delivery of the betaARKct transgene at the time of myocardial infarction prevents the rise in betaARK1 activity and expression and thereby maintains betaAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.Item Open Access Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer.(Proc Natl Acad Sci U S A, 1997-10-28) Akhter, SA; Skaer, CA; Kypson, AP; McDonald, PH; Peppel, KC; Glower, DD; Lefkowitz, RJ; Koch, WJCardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring beta-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular beta-adrenergic signaling defects including down-regulation of myocardial beta-adrenergic receptors (beta-ARs), functional beta-AR uncoupling, and an up-regulation of the beta-AR kinase (betaARK1). Adenoviral-mediated gene transfer of the human beta2-AR or an inhibitor of betaARK1 to these failing myocytes led to the restoration of beta-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of betaARK1 activity in the heart.Item Open Access Role of NHERF and scaffolding proteins in proximal tubule transport.(Urological research, 2010-08) Cunningham, Rochelle; Biswas, Rajatsubhra; Steplock, Deborah; Shenolikar, Shirish; Weinman, EdwardEukaryotic cells coordinate specific responses to hormones and growth factors by spatial and temporal organization of "signaling components." Through the formation of multiprotein complexes, cells are able to generate "signaling components" that transduce hormone signals through proteins, such as PSD-95/Dlg/ZO-1(PDZ)-containing proteins that associate by stable and dynamic interactions. The PDZ homology domain is a common protein interaction domain in eukaryotes and with greater than 500 PDZ domains identified, it is the most abundant protein interaction domain in eukaryotic cells. The NHERF (sodium hydrogen exchanger regulatory factor) proteins are PDZ domain-containing proteins that play an important role in maintaining and regulating cell function. NHERF-1 was initially identified as a brush border membrane-associated phosphoprotein essential for the cAMP/PKA-induced inhibition of the sodium hydrogen exchanger isoform 3 (NHE3). Mouse, rabbit and human renal proximal tubules also express NHERF-2 (E3KARP), a structurally related protein, which in model cell systems also binds NHE3 and mediates its inhibition by cAMP. PDZK1 (NHERF-3) and IKEPP (NHERF-4) were later identified and found to have similar homology domains, leading to their recent reclassification. Although studies have revealed similar binding partners and overlapping functions for the NHERF proteins, it is clear that there is a significant amount of specificity between them. This review focuses primarily on NHERF-1, as the prototypical PDZ protein and will give a brief summary of its role in phosphate transport and the development of some forms of nephrolithiasis.Item Open Access Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.(Biochemistry, 2010-02-16) Xu, Ying; Schmitt, Sebastian; Tang, Liangjie; Jakob, Ursula; Fitzgerald, Michael CMolecular chaperones are a highly diverse group of proteins that recognize and bind unfolded proteins to facilitate protein folding and prevent nonspecific protein aggregation. The mechanisms by which chaperones bind their protein substrates have been studied for decades. However, there are few reports about the affinity of molecular chaperones for their unfolded protein substrates. Thus, little is known about the relative binding affinities of different chaperones and about the relative binding affinities of chaperones for different unfolded protein substrates. Here we describe the application of SUPREX (stability of unpurified proteins from rates of H-D exchange), an H-D exchange and MALDI-based technique, in studying the binding interaction between the molecular chaperone Hsp33 and four different unfolded protein substrates, including citrate synthase, lactate dehydrogenase, malate dehydrogenase, and aldolase. The results of our studies suggest that the cooperativity of the Hsp33 folding-unfolding reaction increases upon binding with denatured protein substrates. This is consistent with the burial of significant hydrophobic surface area in Hsp33 when it interacts with its substrate proteins. The SUPREX-derived K(d) values for Hsp33 complexes with four different substrates were all found to be within the range of 3-300 nM.