Browsing by Subject "Radiation, Ionizing"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access DEK is required for homologous recombination repair of DNA breaks.(Scientific reports, 2017-03-20) Smith, Eric A; Gole, Boris; Willis, Nicholas A; Soria, Rebeca; Starnes, Linda M; Krumpelbeck, Eric F; Jegga, Anil G; Ali, Abdullah M; Guo, Haihong; Meetei, Amom R; Andreassen, Paul R; Kappes, Ferdinand; Vinnedge, Lisa M Privette; Daniel, Jeremy A; Scully, Ralph; Wiesmüller, Lisa; Wells, Susanne IDEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout mice. Furthermore, DEK knockout cells were sensitive to apoptosis with NHEJ inhibition. Thus, we hypothesized DEK plays additional roles in homologous recombination (HR). Using episomal and integrated reporters, we demonstrate that HR repair of conventional DSBs is severely compromised in DEK-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51 filament formation, stability, or function. These findings define DEK as an important and multifunctional mediator of HR, and establish a synthetic lethal relationship between DEK loss and NHEJ inhibition.Item Restricted Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.(PLoS One, 2010-07-12) Meadows, Sarah K; Dressman, Holly K; Daher, Pamela; Himburg, Heather; Russell, J Lauren; Doan, Phuong; Chao, Nelson J; Lucas, Joseph; Nevins, Joseph R; Chute, John PIn the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.Item Restricted Gene expression signatures of radiation response are specific, durable and accurate in mice and humans.(PLoS One, 2008-04-02) Meadows, Sarah K; Dressman, Holly K; Muramoto, Garrett G; Himburg, Heather; Salter, Alice; Wei, ZhengZheng; Ginsburg, Geoffrey S; Chao, Nelson J; Nevins, Joseph R; Chute, John PBACKGROUND: Previous work has demonstrated the potential for peripheral blood (PB) gene expression profiling for the detection of disease or environmental exposures. METHODS AND FINDINGS: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy). A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively. CONCLUSIONS: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.Item Open Access Gene expression signatures that predict radiation exposure in mice and humans.(PLoS Med, 2007-04) Dressman, Holly K; Muramoto, Garrett G; Chao, Nelson J; Meadows, Sarah; Marshall, Dawn; Ginsburg, Geoffrey S; Nevins, Joseph R; Chute, John PBACKGROUND: The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation. METHODS AND FINDINGS: We have made use of gene expression analysis of peripheral blood (PB) mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans. CONCLUSIONS: We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure.Item Open Access Modeling deterministic effects in hematopoietic system caused by chronic exposure to ionizing radiation in large human cohorts.(Health Phys, 2010-09) Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly IA new model of the hematopoietic system for humans chronically exposed to ionizing radiation allows for quantitative description of the initial hematopoiesis inhibition and subsequent increase in the risks of late stochastic effects such as leukemia. This model describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the three blood cell types (leukocytes, erythrocytes, and platelets). The model parameters are estimated from the results of other experiments. They include the steady-state numbers of hematopoietic stem cells and peripheral blood cell lines for an unexposed organism, amplification parameters for each blood cell line, parameters describing the proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity in respect to cell death and non-lethal cell damages. The dynamic model of hematopoiesis is applied to the data on a subcohort of the Techa River residents with hematological measurements (e.g., blood counts) performed in 1950-1956 (which totals to about 3,500 exposed individuals). Among well-described effects observed in these data are the slope values of the dose-effect curves describing the hematopoietic inhibition and the dose rate patterns of the fractions of cytopenic states (e.g., leukopenia, thrombocytopenia). The model has been further generalized by inclusion of the component describing the risk of late stochastic effects. The risks of the development of late effects (such as leukemia) in population groups with specific patterns of early reactions in hematopoiesis (such as leukopenia induced by ionizing radiation) are investigated using simulation studies and compared to data.Item Open Access Modeling hematopoietic system response caused by chronic exposure to ionizing radiation.(Radiat Environ Biophys, 2011-05) Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly IA new model of the hematopoietic system response in humans chronically exposed to ionizing radiation describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the four blood cell types (lymphocytes, neutrophiles, erythrocytes, and platelets). The required model parameters were estimated based on available results of human and experimental animal studies. They include the steady-state number of hematopoietic stem cells and peripheral blood cell lines in an unexposed organism, amplification parameters for each blood line, parameters describing proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity related to cell death and non-lethal cell damage. The model predictions were tested using data on hematological measurements (e.g., blood counts) performed in 1950-1956 in the Techa River residents chronically exposed to ionizing radiation since 1949. The suggested model of hematopoiesis is capable of describing experimental findings in the Techa River Cohort, including: (1) slopes of the dose-effect curves reflecting the inhibition of hematopoiesis due to chronic ionizing radiation, (2) delay in effect of chronic exposure and accumulated character of the effect, and (3) dose-rate patterns for different cytopenic states (e.g., leukopenia, thrombocytopenia).Item Open Access Pandora's boxes: questions unleashed in airport scanner debate.(The Journal of the American Osteopathic Association, 2011-02) Limaye, Milind R; Severance, HarryItem Open Access The bromodomain protein Brd4 insulates chromatin from DNA damage signalling.(Nature, 2013-06-13) Floyd, Scott R; Pacold, Michael E; Huang, Qiuying; Clarke, Scott M; Lam, Fred C; Cannell, Ian G; Bryson, Bryan D; Rameseder, Jonathan; Lee, Michael J; Blake, Emily J; Fydrych, Anna; Ho, Richard; Greenberger, Benjamin A; Chen, Grace C; Maffa, Amanda; Del Rosario, Amanda M; Root, David E; Carpenter, Anne E; Hahn, William C; Sabatini, David M; Chen, Clark C; White, Forest M; Bradner, James E; Yaffe, Michael BDNA damage activates a signalling network that blocks cell-cycle progression, recruits DNA repair factors and/or triggers senescence or programmed cell death. Alterations in chromatin structure are implicated in the initiation and propagation of the DNA damage response. Here we further investigate the role of chromatin structure in the DNA damage response by monitoring ionizing-radiation-induced signalling and response events with a high-content multiplex RNA-mediated interference screen of chromatin-modifying and -interacting genes. We discover that an isoform of Brd4, a bromodomain and extra-terminal (BET) family member, functions as an endogenous inhibitor of DNA damage response signalling by recruiting the condensin II chromatin remodelling complex to acetylated histones through bromodomain interactions. Loss of this isoform results in relaxed chromatin structure, rapid cell-cycle checkpoint recovery and enhanced survival after irradiation, whereas functional gain of this isoform compacted chromatin, attenuated DNA damage response signalling and enhanced radiation-induced lethality. These data implicate Brd4, previously known for its role in transcriptional control, as an insulator of chromatin that can modulate the signalling response to DNA damage.