Browsing by Subject "Rare disease"
Results Per Page
Sort Options
Item Open Access Identification of barriers at the primary care provider level to improve inflammatory breast cancer diagnosis and management.(Preventive medicine reports, 2023-12) Devi, Gayathri R; Fish, Laura J; Bennion, Alexandra; Sawin, Gregory E; Weaver, Sarah M; Reddy, Katherine; Saincher, Rashmi; Tran, Anh NThe purpose of this study, based in the United States, was to evaluate knowledge gaps and barriers related to diagnosis and care of inflammatory breast cancer (IBC), a rare but lethal breast cancer subtype, amongst Primary Care Providers (PCP) as they are often the first point of contact when patients notice initial symptoms. PCP participants in the Duke University Health System, federally qualified health center, corporate employee health and community practices, nearby academic medical center, Duke physician assistant and advanced practice nurse leadership program alumni were first selected in a convenience sample and for semi-structured interviews (n = 11). Based on these data, an online survey tool was developed and disseminated (n = 78) to assess salient measures of IBC diagnosis, health disparity factors, referral and care coordination practices, COVID-19 impact, and continuing medical education (CME). PCP reported access to care and knowledge gaps in symptom recognition (mean = 3.3, range 1-7) as major barriers. Only 31 % reported ever suspecting IBC in a patient. PCP (n = 49) responded being challenged with referral delays in diagnostic imaging. Additionally, since the COVID-19 pandemic started, 63 % reported breast cancer referral delays, and 33 % reported diagnosing less breast cancer. PCP stated interest in CME in their practice for improved diagnosis and patient care, which included online (53 %), lunch time or other in-service training (33 %), patient and provider-facing websites (32 %). Challenges communicating rare cancer information, gaps in confidence in diagnosing IBC, and timely follow-up with patients and specialists underscores the need for developing PCP educational modules to improve guideline-concordant care.Item Open Access Whole-exome Sequencing in Rare Diseases and Complex Traits: Analysis and Interpretation(2017) Zhu, XiaolinNext-generation sequencing (NGS), including whole-exome sequencing (WES) and whole-genome sequencing (WGS), has dramatically empowered the human genetic analysis of disease. This is clearly demonstrated by the exponential increase in the number of newly identified disease-causing genes since the early applications of WES to study human diseases1. In particular, WES has been extremely successful in determining the causal mutations of sporadic rare disorders that are intractable to genetic mapping due to lack of informative pedigrees, a large proportion of which are later shown to be caused by de novo mutations (DNMs). In the meantime, WES and WGS studies are being performed increasingly in population scale to understand the genetic basis of complex diseases and traits. The discovery power of WES and WGS is expected to boost further as more and more patients and healthy individuals are sequenced with the development of more powerful and less expensive sequencing technologies. Meanwhile, clinical WES and WGS are playing an increasingly important role in guiding physicians to achieve the accurate diagnosis and treatment informed by genetic findings.
WES and WGS generate a massive amount of sequence data that include both signals and noises, posing challenges for scientists and clinicians to overcome to fully realize the discovery and diagnostic power of NGS. Indeed, despite the many new disease-associated genes identified to date, methodologies used to analyze sequence data vary across research groups and there seems to be no standardized analysis method like those used in genome-wide association studies. Indeed, the sequence data generated allows different ways to perform genetic analysis, and the approach taken can rely on the hypothesis about the underlying genetic architecture of the phenotype, which is often difficult to know precisely. Herein we explored and evaluated two primary approaches to analyzing and interpreting WES data in different contexts. The first is a trio interpretation framework based on variant/genotype filtering and bioinformatic signatures of genes and variants, which can be used to identify the highly penetrant causal mutations responsible for rare genetic conditions given known genotype-phenotype correlations and, at the same time, indicate the presence of novel disease-causing genes. The second is a formal statistical genetics framework comparing the burden of rare, high impact variants gene by gene in case and control subjects, which can be used to identify novel disease-causing genes for both Mendelian and complex traits. We introduced each of these two approaches and provided examples of their implementations.
In Chapter 2, we presented our trio interpretation framework and sought to determine the genetic diagnoses of undiagnosed genetic conditions using WES. By further developing a trio interpretation framework reported in our pilot study2 and applying it to interpreting 119 trios (affected children and their unaffected biological parents), we achieved a diagnostic rate of 24% based on known genotype-phenotype correlations when the study was performed. Furthermore, we sought to extract bioinformatic signatures of causal variants and genes and showed that these bioinformatic signatures clearly pointed toward the pathogenic variants in novel disease-causing genes, some of which have been confirmed later by larger, independent studies. Our study highlights the importance of regularly reanalyzing clinical exomes to achieve the best diagnostic rate of WES by leveraging the latest databases of population-scale sequence (e.g., EVS and ExAC) and genotype-phenotype correlation (e.g., OMIM and ClinVar) as well as advancements in analytical methods. In our documentation of individual cases resolved by trio WES, we also discussed technical details relevant to how the genetic diagnosis was achieved in individual cases.
In Chapter 3, we presented our case-control gene-based collapsing framework focusing on ultra-rare variants predicted to have a high functional impact and sought to identify disease-causing genes responsible for two neurodevelopmental disorders: epileptic encephalopathy (EE) and periventricular nodular heterotopia (PVNH), both rare disorders presumably caused by highly penetrant mutations and characterized by genetic heterogeneity. Remarkably, both conditions had been subjected to DNM analyses by us or other groups, which was very successful and implicated novel causal genes for EE. We showed that our genetic association analysis framework successfully identified EE genes originally implicated by DNM analyses, and a novel PVNH gene that would not be identified by a DNM analysis, empirically highlighting the power of case-control gene-based collapsing analysis in identifying disease genes in rare neurodevelopmental disorders, in particular when we have an educated guess of the genetic architecture of the phenotype. In the third project, we extended our gene-based collapsing analysis to quantitative traits and sought to understand the genetic basis of a newly defined quantitative bone microstructure phenotype that was shown to be strongly associated with ethnicity in White and Asian women. We have special interest in this presumably complex trait for mainly two reasons: it can be a potential “endophenotype” for important bone diseases including osteoporosis, and its strong association with ethnicity indicates genetic control. In this pilot study, we generated WES data on a small number of White and Asian women and applied our gene-based collapsing analysis framework in order to identify the genes associated with this quantitative trait. A larger sample size would likely yield more definitive genetic discoveries, but our preliminary findings suggest that using WES to study the genetics of such “endophenotypes” and other novel clinically relevant phenotypes can identify causal variants that have a high functional impact and deliver novel biological insights.
In conclusion, we introduced a trio WES interpretation framework to identify the genetic diagnoses of unresolved rare genetic diseases and a gene-based collapsing analysis framework focusing on rare, functionally impactful variants to identify genes associated with dichotomous and quantitative traits, and evaluated these methods in multiple human genetic studies. The power of these methods will be boosted by its application to novel phenotypes and the accruing WES and WGS data generated from both patients and healthy individuals.