Browsing by Subject "Receptors, Adrenergic, beta-2"
Now showing 1 - 20 of 21
Results Per Page
Sort Options
Item Open Access A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins.(Proc Natl Acad Sci U S A, 1998-07-21) Hall, RA; Ostedgaard, LS; Premont, RT; Blitzer, JT; Rahman, N; Welsh, MJ; Lefkowitz, RJThe Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.Item Open Access A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated.(Proc Natl Acad Sci U S A, 1994-03-29) Pei, G; Samama, P; Lohse, M; Wang, M; Codina, J; Lefkowitz, RJThe beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.Item Open Access Adjunctive β2-agonists reverse neuromuscular involvement in murine Pompe disease.(FASEB J, 2013-01) Li, Songtao; Sun, Baodong; Nilsson, Mats I; Bird, Andrew; Tarnopolsky, Mark A; Thurberg, Beth L; Bali, Deeksha; Koeberl, Dwight DPompe disease has resisted enzyme replacement therapy with acid α-glucosidase (GAA), which has been attributed to inefficient cation-independent mannose-6-phosphate receptor (CI-MPR) mediated uptake. We evaluated β2-agonist drugs, which increased CI-MPR expression in GAA knockout (KO) mice. Clenbuterol along with a low-dose adeno-associated virus vector increased Rotarod latency by 75% at 4 wk, in comparison with vector alone (P<2×10(-5)). Glycogen content was lower in skeletal muscles, including soleus (P<0.01), extensor digitorum longus (EDL; P<0.001), and tibialis anterior (P<0.05) following combination therapy, in comparison with vector alone. Glycogen remained elevated in the muscles following clenbuterol alone, indicating an adjunctive effect with gene therapy. Elderly GAA-KO mice treated with combination therapy demonstrated 2-fold increased wirehang latency, in comparison with vector or clenbuterol alone (P<0.001). The glycogen content of skeletal muscle decreased following combination therapy in elderly mice (P<0.05). Finally, CI-MPR-KO/GAA-KO mice did not respond to combination therapy, indicating that clenbuterol's effect depended on CI-MPR expression. In summary, adjunctive β2-agonist treatment increased CI-MPR expression and enhanced efficacy from gene therapy in Pompe disease, which has implications for other lysosomal storage disorders that involve primarily the brain.Item Open Access Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy.(J Clin Invest, 2001-04) Freeman, K; Lerman, I; Kranias, EG; Bohlmeyer, T; Bristow, MR; Lefkowitz, RJ; Iaccarino, G; Koch, WJ; Leinwand, LAThe medical treatment of chronic heart failure has undergone a dramatic transition in the past decade. Short-term approaches for altering hemodynamics have given way to long-term, reparative strategies, including beta-adrenergic receptor (betaAR) blockade. This was once viewed as counterintuitive, because acute administration causes myocardial depression. Cardiac myocytes from failing hearts show changes in betaAR signaling and excitation-contraction coupling that can impair cardiac contractility, but the role of these abnormalities in the progression of heart failure is controversial. We therefore tested the impact of different manipulations that increase contractility on the progression of cardiac dysfunction in a mouse model of hypertrophic cardiomyopathy. High-level overexpression of the beta(2)AR caused rapidly progressive cardiac failure in this model. In contrast, phospholamban ablation prevented systolic dysfunction and exercise intolerance, but not hypertrophy, in hypertrophic cardiomyopathy mice. Cardiac expression of a peptide inhibitor of the betaAR kinase 1 not only prevented systolic dysfunction and exercise intolerance but also decreased cardiac remodeling and hypertrophic gene expression. These three manipulations of cardiac contractility had distinct effects on disease progression, suggesting that selective modulation of particular aspects of betaAR signaling or excitation-contraction coupling can provide therapeutic benefit.Item Open Access beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking.(Proc Natl Acad Sci U S A, 2001-02-13) Kohout, TA; Lin, FS; Perry, SJ; Conner, DA; Lefkowitz, RJThe two widely coexpressed isoforms of beta-arrestin (termed beta arrestin 1 and 2) are highly similar in amino acid sequence. The beta-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of beta-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the beta-arrestins (beta arr1-KO and beta arr2-KO) or both (beta arr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the beta(2)-adrenergic receptor (beta(2)-AR) and the angiotensin II type 1A receptor (AT(1A)-R). Both beta arr1-KO and beta arr2-KO cells showed similar impairment in agonist-stimulated beta(2)-AR and AT(1A)-R desensitization, when compared with their WT control cells, and the beta arr1/2-KO cells were even further impaired. Sequestration of the beta(2)-AR in the beta arr2-KO cells was compromised significantly (87% reduction), whereas in the beta arr1-KO cells it was not. Agonist-stimulated internalization of the AT(1A)-R was only slightly reduced in the beta arr1-KO but was unaffected in the beta arr2-KO cells. In the beta arr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two beta-arrestins to sequester the beta(2)-AR revealed beta-arrestin 2 to be 100-fold more potent than beta-arrestin 1. Down-regulation of the beta(2)-AR was also prevented in the beta arr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two beta-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.Item Open Access Beta2-adrenergic receptor gene polymorphisms as systemic determinants of healthy aging in an evolutionary context.(Mech Ageing Dev, 2010-05) Kulminski, Alexander M; Culminskaya, Irina; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Land, Kenneth C; Yashin, Anatoli IThe Gln(27)Glu polymorphism but not the Arg(16)Gly polymorphism of the beta2-adrenergic receptor (ADRB2) gene appears to be associated with a broad range of aging-associated phenotypes, including cancers at different sites, myocardial infarction (MI), intermittent claudication (IC), and overall/healthy longevity in the Framingham Heart Study Offspring cohort. The Gln(27)Gln genotype increases risks of cancer, MI and IC, whereas the Glu(27) allele or, equivalently, the Gly(16)Glu(27) haplotype tends to be protective against these diseases. Genetic associations with longevity are of opposite nature at young-old and oldest-old ages highlighting the phenomenon of antagonistic pleiotropy. The mechanism of antagonistic pleiotropy is associated with an evolutionary-driven advantage of carriers of a derived Gln(27) allele at younger ages and their survival disadvantage at older ages as a result of increased risks of cancer, MI and IC. The ADRB2 gene can play an important systemic role in healthy aging in evolutionary context that warrants exploration in other populations.Item Restricted beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein.(Proc Natl Acad Sci U S A, 1998-11-24) Premont, RT; Claing, A; Vitale, N; Freeman, JL; Pitcher, JA; Patton, WA; Moss, J; Vaughan, M; Lefkowitz, RJG protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.Item Open Access Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes.(Circ Res, 1999-01-08) Xiao, RP; Avdonin, P; Zhou, YY; Cheng, H; Akhter, SA; Eschenhagen, T; Lefkowitz, RJ; Koch, WJ; Lakatta, EG-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.Item Open Access Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes.(Proc Natl Acad Sci U S A, 2001-02-13) Zhu, WZ; Zheng, M; Koch, WJ; Lefkowitz, RJ; Kobilka, BK; Xiao, RPThe goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.Item Open Access Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein.(J Clin Invest, 1996-04-01) Rockman, HA; Hamilton, RA; Jones, LR; Milano, CA; Mao, L; Lefkowitz, RJTo assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.Item Open Access Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery.(J Clin Invest, 1999-07) Maurice, JP; Hata, JA; Shah, AS; White, DC; McDonald, PH; Dolber, PC; Wilson, KH; Lefkowitz, RJ; Glower, DD; Koch, WJExogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.Item Open Access Interactions between social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China.(BMC Geriatr, 2013-09-09) Zeng, Yi; Cheng, Lingguo; Zhao, Ling; Tan, Qihua; Feng, Qiushi; Chen, Huashuai; Shen, Ke; Li, Jianxin; Zhang, Fengyu; Cao, Huiqing; Gregory, Simon G; Yang, Ze; Gu, Jun; Tao, Wei; Tian, Xiao-Li; Hauser, Elizabeth RBACKGROUND: Existing literature indicates that ADRB2 gene is associated with health and longevity, but none of previous studies investigated associations of carrying the ADRB2 minor alleles and interactions between ADRB2 genotypes and social/behavioral factors(GxE) with health outcomes at advanced ages. This study intends to fill in this research gap. METHOD: We conducted an exploratory analysis, using longitudinal survey phenotype/genotype data from 877 oldest-old aged 90+. To estimate association of GxE interactions with health outcome, adjusted for the potential correlation between genotypes and social/behavioral factors and various other potentially confounding factors, we develop and test an innovative three-step procedure which combines logistic regression and structural equation methods. RESULTS: Interaction between regular exercise and carrying rs1042718 minor allele is significantly and positively associated with good cognitive function; interaction between regular exercise and carrying rs1042718 or rs1042719 minor allele is significantly and positively associated with self-reported good health; and interaction between social-leisure activities and carrying rs1042719 minor allele is significantly and positively associated with self-reported good health. Carrying rs1042718 or rs1042719 minor alleles is significantly and negatively associated with negative emotion, but the ADRB2 SNPs are not significantly associated with cognitive function and self-reported health. Our structural equation analysis found that, adjusted for the confounding effects of correlation of the ADRB2 SNPs with negative emotion, interaction between negative emotion and carrying rs1042718 or rs1042719 minor allele is significantly and negatively associated with cognitive function. The positive association of regular exercise and social-leisure activities with cognitive function and self-reported health, and negative association of negative emotion with cognitive function, were much stronger among carriers of rs1042718 or rs1042719 alleles, compared to the non-carriers. CONCLUSIONS: The results indicate significant positive associations of interactions between social/behavioral factors and the ADRB2 genotypes with health outcomes of cognitive function and self-reported health, and negative associations of carrying rs1042718 or rs1042719 minor alleles with negative emotion, at advanced ages in China. Our findings are exploratory rather than causal conclusions. This study implies that near-future health promotion programs considering individuals' genetic profiles, with appropriate protection of privacy/confidentiality, would yield increased benefits and reduced costs to the programs and their participants.Item Open Access Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart : prospects for molecular ventricular assistance.(Circulation, 2000-02-01) Glower, Donald D Jr; Hata, Jonathan Andrew; Koch, Walter J; Kypson, Alan P; Lefkowitz, Robert J; Lilly, R Eric; Pippen, Anne; Shah, AS; Silvestry, Scott Christopher; Tai, OliverBACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.Item Open Access Ligand-induced overexpression of a constitutively active beta2-adrenergic receptor: pharmacological creation of a phenotype in transgenic mice.(Proc Natl Acad Sci U S A, 1997-01-07) Samama, P; Bond, RA; Rockman, HA; Milano, CA; Lefkowitz, RJTransgenic overexpression (40- to 100-fold) of the wild-type human beta2-adrenergic receptor in the hearts of mice leads to a marked increase in cardiac contractility, which is apparently due to the low level of spontaneous (i.e., agonist-independent) activity inherent in the receptor. Here we report that transgenic mice expressing a mutated constitutively active form of the receptor (CAM) show no such phenotype, owing to its modest expression (3-fold above endogenous cardiac beta-adrenergic receptor levels). Surprisingly, treatment of the animals with a variety of beta-adrenergic receptor ligands leads to a 50-fold increase in CAM beta2-adrenergic receptor expression, by stabilizing the CAM beta2-adrenergic receptor protein. Receptor up-regulation leads in turn to marked increases in adenylate cyclase activity, atrial tension determined in vitro, and indices of cardiac contractility determined in vivo. These results illustrate a novel mechanism for regulating physiological responses, i.e., ligand-induced stabilization of a constitutively active but inherently unstable protein.Item Open Access Overexpression of the cardiac beta(2)-adrenergic receptor and expression of a beta-adrenergic receptor kinase-1 (betaARK1) inhibitor both increase myocardial contractility but have differential effects on susceptibility to ischemic injury.(Circ Res, 1999-11-26) Cross, HR; Steenbergen, C; Lefkowitz, RJ; Koch, WJ; Murphy, ECardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.Item Open Access Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity.(Mol Cell Biol, 2000-11) Maudsley, S; Zamah, AM; Rahman, N; Blitzer, JT; Luttrell, LM; Lefkowitz, RJ; Hall, RAPlatelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.Item Open Access Polymorphisms in the ACE and ADRB2 genes and risks of aging-associated phenotypes: the case of myocardial infarction.(Rejuvenation Res, 2010-02) Kulminski, Alexander M; Culminskaya, Irina V; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akushevich, Igor; Land, Kenneth C; Yashin, Anatoli IMultiple functions of the beta2-adrenergic receptor (ADRB2) and angiotensin-converting enzyme (ACE) genes warrant studies of their associations with aging-related phenotypes. We focus on multimarker analyses and analyses of the effects of compound genotypes of two polymorphisms in the ADRB2 gene, rs1042713 and rs1042714, and 11 polymorphisms of the ACE gene, on the risk of such an aging-associated phenotype as myocardial infarction (MI). We used the data from a genotyped sample of the Framingham Heart Study Offspring (FHSO) cohort (n = 1500) followed for about 36 years with six examinations. The ADRB2 rs1042714 (C-->G) polymorphism and two moderately correlated (r(2) = 0.77) ACE polymorphisms, rs4363 (A-->G) and rs12449782 (A-->G), were significantly associated with risks of MI in this aging cohort in multimarker models. Predominantly linked ACE genotypes exhibited opposite effects on MI risks, e.g., the AA (rs12449782) genotype had a detrimental effect, whereas the predominantly linked AA (rs4363) genotype exhibited a protective effect. This trade-off occurs as a result of the opposite effects of rare compound genotypes of the ACE polymorphisms with a single dose of the AG heterozygote. This genetic trade-off is further augmented by the selective modulating effect of the rs1042714 ADRB2 polymorphism. The associations were not altered by adjustment for common MI risk factors. The results suggest that effects of single specific genetic variants of the ADRB2 and ACE genes on MI can be readily altered by gene-gene or/and gene-environmental interactions, especially in large heterogeneous samples. Multimarker genetic analyses should benefit studies of complex aging-associated phenotypes.Item Open Access Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes.(J Clin Invest, 1997-01-15) Drazner, MH; Peppel, KC; Dyer, S; Grant, AO; Koch, WJ; Lefkowitz, RJOur laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.Item Open Access The third beta is not the charm.(J Clin Invest, 1996-07-15) Bond, RA; Lefkowitz, RJItem Open Access Visualization of arrestin recruitment by a G-protein-coupled receptor.(Nature, 2014-08-14) Shukla, Arun K; Westfield, Gerwin H; Xiao, Kunhong; Reis, Rosana I; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N; Dosey, Anne M; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U; Kahsai, Alem W; Sidhu, Sachdev S; Koide, Shohei; Penczek, Pawel A; Kossiakoff, Anthony A; Woods, Virgil L; Kobilka, Brian K; Skiniotis, Georgios; Lefkowitz, Robert JG-protein-coupled receptors (GPCRs) are critically regulated by β-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G-protein complex, has provided novel insights into the structural basis of receptor activation. However, complementary information has been lacking on the recruitment of β-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor-β-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human β2AR-β-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between β2AR and β-arrestin 1 using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of β-arrestin 1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of β-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of β-arrestin 1 when coupled to the β2AR. A molecular model of the β2AR-β-arrestin signalling complex was made by docking activated β-arrestin 1 and β2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.