Browsing by Subject "Receptors, N-Methyl-D-Aspartate"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer.(2011) Curtis, Valerie ForbesIn many cancer types, infiltration of bone marrow-derived myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis. The polypeptide chemokine PK2 (Bv8) regulates myeloid cell mobilization from the bone marrow, leading to activation of angiogenesis as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. However, antibody-based therapies can be too large to treat certain diseases and too expensive to manufacture while small molecule therapeutics are not prohibitive in these ways. In this study, we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the contexts of glioblastoma and pancreatic cancer xenograft tumor models. In the highly vascularized glioblastoma, PKRA7 decreased blood vessel density while increasing necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 is mediated by the blockage of myeloid cell migration and infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of several pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both glioblastoma and pancreatic tumors. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.Item Open Access Arc/Arg3.1 translation is controlled by convergent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways.(The Journal of biological chemistry, 2008-01) Bloomer, Wendy AC; VanDongen, Hendrika MA; VanDongen, Antonius MJArc/Arg3.1 is an immediate early gene whose expression is necessary for the late-phase of long-term potentiation (LTP) and memory consolidation. Whereas pathways regulating Arc transcription have been extensively investigated, less is known about the role of post-transcriptional mechanisms in Arc expression. Fluorescence microscopy experiments in cultured hippocampal neurons revealed that Arc protein level was dramatically increased by activation of the cAMP-dependent protein kinase (PKA) pathway, which is implicated in long-term memory. A PKA-dependent increase in Arc protein level was observed after pharmacological or synaptic activation of N-methyl-D-aspartate (NMDA) receptors, which play a critical role in both LTP induction and learning. Arc protein was also up-regulated by activation of PKA through G(s)-coupled dopamine and beta-adrenergic receptors, which regulate the late-phase of LTP and memory. When agonists for the NMDA and G(s)-coupled receptors were co-applied, they had an additive effect on Arc protein expression. Interestingly, G(s)-coupled receptor stimulation was ineffective in the presence of an NMDA receptor antagonist, suggesting calcium influx through the NMDA receptor plays a gating role in this pathway. Stimulation of the cAMP/PKA pathway did not affect Arc mRNA level or protein stability, identifying translational efficacy as the main determinant of Arc protein expression level. It is concluded that efficient Arc translation requires NMDA receptor activity, whereas a further enhancement can be achieved with activation of G(s)-coupled receptors. These experiments have, therefore, revealed remarkable similarities in the signaling pathways that control Arc expression and those that regulate LTP, learning, and memory.Item Open Access Burst-Dependent Bidirectional Plasticity in the Cerebellum Is Driven by Presynaptic NMDA Receptors.(Cell reports, 2016-04) Bouvier, Guy; Higgins, David; Spolidoro, Maria; Carrel, Damien; Mathieu, Benjamin; Léna, Clément; Dieudonné, Stéphane; Barbour, Boris; Brunel, Nicolas; Casado, MarianoNumerous studies have shown that cerebellar function is related to the plasticity at the synapses between parallel fibers and Purkinje cells. How specific input patterns determine plasticity outcomes, as well as the biophysics underlying plasticity of these synapses, remain unclear. Here, we characterize the patterns of activity that lead to postsynaptically expressed LTP using both in vivo and in vitro experiments. Similar to the requirements of LTD, we find that high-frequency bursts are necessary to trigger LTP and that this burst-dependent plasticity depends on presynaptic NMDA receptors and nitric oxide (NO) signaling. We provide direct evidence for calcium entry through presynaptic NMDA receptors in a subpopulation of parallel fiber varicosities. Finally, we develop and experimentally verify a mechanistic plasticity model based on NO and calcium signaling. The model reproduces plasticity outcomes from data and predicts the effect of arbitrary patterns of synaptic inputs on Purkinje cells, thereby providing a unified description of plasticity.Item Open Access Differential expression of glutamate receptors in avian neural pathways for learned vocalization.(J Comp Neurol, 2004-08-09) Wada, Kazuhiro; Sakaguchi, Hironobu; Jarvis, Erich D; Hagiwara, MasatoshiLearned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds-parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas.Item Open Access Mechanisms of specificity in neuronal activity-regulated gene transcription.(2012) Lyons, Michelle RenéeIn the nervous system, activity-regulated gene transcription is one of the fundamental processes responsible for orchestrating proper brain development–a process that in humans takes over 20 years. Moreover, activity-dependent regulation of gene expression continues to be important for normal brain function throughout life; for example, some forms of synaptic plasticity important for learning and memory are known to rely on alterations in gene transcription elicited by sensory input. In the last two decades, increasingly comprehensive studies have described complex patterns of gene transcription induced and/or repressed following different kinds of stimuli that act in concert to effect changes in neuronal and synaptic physiology. A key theme to emerge from these studies is that of specificity, meaning that different kinds of stimuli up- and down regulate distinct sets of genes. The importance of such signaling specificity in synapse-to-nucleus communication becomes readily apparent in studies examining the physiological effects of the loss of one or more forms of transcriptional specificity – often, such genetic manipulations result in aberrant synapse formation, neuronal cell death, and/or cognitive impairment in mutant mice. The two primary loci at which mechanisms of signaling specificity typically act are 1) at the synapse – in the form of calcium channel number, localization, and subunit composition – and 2) in the nucleus – in the form of transcription factor expression, localization, and post-translational modification. My dissertation research has focused on the mechanisms of specificity that govern the activity-regulated transcription of the gene encoding Brain-derived Neurotrophic Factor(Bdnf). BDNF is a secreted protein that has numerous important functions in nervous system development and plasticity, including neuronal survival, neurite outgrowth, synapse formation, and long-term potentiation. Due to Bdnf’s complex transcriptional regulation by various forms of neural stimuli, it is well positioned to function as a transducer through which altered neural activity states can lead to changes in neuronal physiology and synaptic function. In this dissertation, I show that different families of transcription factors, and even different isoforms or splice variants within a single family, can specifically regulate Bdnf transcription in an age- and stimulus-dependent manner. Additionally, I characterize another mechanism of synapse-to-nucleus signaling specificity that is dependent upon NMDA-type glutamate receptor subunit composition, and provide evidence that the effect this signaling pathway has on gene transcription is important for normal GABAergic synapse formation. Taken together, my dissertation research sheds light on several novel signaling mechanisms that could lend specificity to the activity-dependent transcription of Bdnf exon IV. My data indicate that distinct neuronal stimuli can differentially regulate the Calcium-Response Element CaRE1 within Bdnf promoter IV through activation of two distinct transcription factors: Calcium-Response Factor (CaRF) and Myocyte Enhancer Factor 2 (MEF2). Furthermore, individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, and different MEF2C splice variants are unequally responsive to L-type voltage-gated calcium channel activation. Additionally, I show here for the first time that the NMDA-type glutamate receptor subunit NR3A (also known as GluN3A) is capable of exerting an effect on NMDA receptor-dependent Bdnf exon IV transcription, and that changes in the expression levels of NR3A may function to regulate the threshold for activation of synaptic plasticity-inducing transcriptional programs during brain development. Finally, I provide evidence that the transcription factor CaRF might function in the regulation of homeostatic programs of gene transcription in an age- and stimulus-specific manner. Together, these data describe multiple novel mechanisms of specificity in neuronal activity-regulated gene transcription, some of which function at the synapse, others of which function in the nucleus.Item Open Access Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression.(Science, 2016-02-19) Li, Boxing; Tadross, Michael R; Tsien, Richard WVoltage-gated CaV1.2 channels (L-type calcium channel α1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VΔC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VΔC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VΔC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VΔC by 10 to 20 seconds. CaV1.2 VΔC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VΔC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VΔC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.