Browsing by Subject "Receptors, Vasopressin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Controlled and cardiac-restricted overexpression of the arginine vasopressin V1A receptor causes reversible left ventricular dysfunction through Gαq-mediated cell signaling.(Circulation, 2011-08) Li, Xue; Chan, Tung O; Myers, Valerie; Chowdhury, Ibrul; Zhang, Xue-Qian; Song, Jianliang; Zhang, Jin; Andrel, Jocelyn; Funakoshi, Hajime; Robbins, Jeffrey; Koch, Walter J; Hyslop, Terry; Cheung, Joseph Y; Feldman, Arthur MBackground
[Arg8]-vasopressin (AVP) activates 3 G-protein-coupled receptors: V1A, V2, and V1B. The AVP-V1A receptor is the primary AVP receptor in the heart; however, its role in cardiac homeostasis is controversial. To better understand AVP-mediated signaling in the heart, we created a transgenic mouse with controlled overexpression of the V1A receptor.Methods and results
The V1A receptor transgene was placed under the control of the tetracycline-regulated, cardiac-specific α-myosin heavy chain promoter (V1A-TG). V1A-TG mice had a normal cardiac function phenotype at 10 weeks of age; however, by 24 weeks of age, tetracycline-transactivating factor/V1A-TG mouse hearts had reduced cardiac function, cardiac hypertrophy, and dilatation of the ventricular cavity. Contractile dysfunction was also observed in isolated adult cardiac myocytes. When V1A receptor transgene was induced to be expressed in adult mice (V1A-TG(Ind)), left ventricular dysfunction and dilatation were also seen, albeit at a later time point. Because the V1A receptor mediates cell signaling through Gα(q) protein, we blocked Gα(q) signaling by crossing tetracycline-transactivating factor/V1A mice with transgenic mice that expressed a small inhibitory peptide against Gα(q). Gα(q) blockade abrogated the development of the heart failure phenotype in tetracycline-transactivating factor/V1A-TG mice. The heart failure phenotype could be reversed by administration of doxycycline.Conclusions
Our results demonstrate a role for V1A-mediated signaling in the development of heart failure and support a role for V1A blockade in the treatment of patients with elevated levels of vasopressin.Item Open Access The potential repertoire of the innate immune system in the bladder: expression of pattern recognition receptors in the rat bladder and a rat urothelial cell line (MYP3 cells).(International urology and nephrology, 2015-12) Hughes, Francis M; Turner, David P; Todd Purves, JThe urothelium is a frontline sensor of the lower urinary tract, sampling the bladder lumen and stimulating an immune response to infectious and noxious agents. Pattern recognition receptors (PRRs) recognize such agents and coordinate the innate response, often by forming inflammasomes that activate caspase-1 and the release of interleukin-1. We have shown the presence of one PRR (NLRP3) in the urothelia and its central role in the inflammatory response to cyclophosphamide. The purpose of this study was to (1) assess the likely range of the PPR response by assessing the repertoire present in the rat bladder and (2) determine the utility of the MYP3 rat urothelia cell line for in vitro studies by assessing its PPR repertoire and functional responsiveness.Immunohistochemistry was performed for seven PPRs (NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4 and AIM2) on bladder sections and MYP3 cells. For functionality, MYP3 cells were challenged with the quintessential NLRP3 activator ATP and assessed for caspase-1 activation.All PPRs examined were expressed in the bladder and localized to the urothelial layer with several also in the detrusor (none in the interstitia). MYP3 cells also expressed all PRRs with a variable intracellular location. ATP-stimulated caspase-1 activity in MYP3 cells in a dose-dependent manner was reduced by knockdown of NLRP3 expression.The results suggest that the bladder possesses the capacity to initiate an innate immune response to a wide array of uropathological agents and the MYP3 cells will provide an excellent investigational tool for this field.