Browsing by Subject "Reflex, Startle"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Developmental exposure of zebrafish to vitamin D receptor acting drugs and environmental toxicants disrupts behavioral function.(Neurotoxicology and teratology, 2020-09) Oliveri, Anthony N; Glazer, Lilah; Mahapatra, Debabrata; Kullman, Seth W; Levin, Edward DVitamin D receptor (VDR) signaling is important for optimal neurobehavioral development. Disruption of VDR signaling by environmental toxicants during early development might contribute to the etiology of behavioral dysfunction. In the current set of studies, we examined ten compounds known to affect VDR function in vitro for neurobehavioral effects in vivo in zebrafish. Zebrafish embryos were exposed to concentrations of the compounds in their water during the first 5 days post-fertilization. On day 5, the embryos were tested in an alternating light-dark locomotor assay using a computerized video tracking system. We found that most of the compounds produced significant changes in locomotor behavior in exposed zebrafish larvae, although the direction of the effect (i.e., hypo- or hyperactivity) and the sensitivity of the effect to changes in illumination condition varied across the compounds. The nature of the behavioral effects generally corresponded to the effects these compounds have been shown to exert on VDR. These studies lay a foundation for further investigation to determine whether behavioral dysfunction persists into adulthood and if so which behavioral functions are affected. Zebrafish can be useful for screening compounds identified in high throughput in vitro assays to provide an initial test for how those compounds would affect construction and behavioral function of a complex nervous system, helping to bridge the gap between in vitro neurotoxicity assays and mammalian models for risk assessment in humans.Item Open Access Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.(Neurotoxicol Teratol, 2016-01) Brown, DR; Bailey, JM; Oliveri, AN; Levin, ED; Di Giulio, RTAcute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.Item Open Access Meclizine enhancement of sensorimotor gating in healthy male subjects with high startle responses and low prepulse inhibition.(Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2014-02) Larrauri, José A; Kelley, Lisalynn D; Jenkins, Mason R; Westman, Eric C; Schmajuk, Nestor A; Rosenthal, M Zachary; Levin, Edward DHistamine H1 receptor systems have been shown in animal studies to have important roles in the reversal of sensorimotor gating deficits, as measured by prepulse inhibition (PPI). H1-antagonist treatment attenuates the PPI impairments caused by either blockade of NMDA glutamate receptors or facilitation of dopamine transmission. The current experiment brought the investigation of H1 effects on sensorimotor gating to human studies. The effects of the histamine H1 antagonist meclizine on the startle response and PPI were investigated in healthy male subjects with high baseline startle responses and low PPI levels. Meclizine was administered to participants (n=24) using a within-subjects design with each participant receiving 0, 12.5, and 25 mg of meclizine in a counterbalanced order. Startle response, PPI, heart rate response, galvanic skin response, and changes in self-report ratings of alertness levels and affective states (arousal and valence) were assessed. When compared with the control (placebo) condition, the two doses of meclizine analyzed (12.5 and 25 mg) produced significant increases in PPI without affecting the magnitude of the startle response or other physiological variables. Meclizine also caused a significant increase in overall self-reported arousal levels, which was not correlated with the observed increase in PPI. These results are in agreement with previous reports in the animal literature and suggest that H1 antagonists may have beneficial effects in the treatment of subjects with compromised sensorimotor gating and enhanced motor responses to sensory stimuli.Item Open Access Neuron-specific Sumo1-3 knockdown in mice impairs episodic and fear memories.(Journal of psychiatry & neuroscience : JPN, 2014-07) Wang, Liangli; Rodriguiz, Ramona M; Wetsel, William C; Sheng, Huaxin; Zhao, Shengli; Liu, Xiaozhi; Paschen, Wulf; Yang, WeiBACKGROUND:Growing evidence suggests that small ubiquitin-like modifier (SUMO) conjugation plays a key role in brain plasticity by modulating activity-dependent synaptic transmission. However, these observations are based largely on cell culture experiments. We hypothesized that episodic and fear memories would be affected by silencing SUMO1-3 expression. METHODS:To investigate the role of SUMO conjugation in neuronal functioning in vivo, we generated a novel Sumo transgenic mouse model in which a Thy1 promoter drives expression of 3 distinct microRNAs to silence Sumo1-3 expression, specifically in neurons. Wild-type and Sumo1-3 knockdown mice were subjected to a battery of behavioural tests to elucidate whether Sumoylation is involved in episodic and emotional memory. RESULTS:Expression of Sumo1-3 microRNAs and the corresponding silencing of Sumo expression were particularly pronounced in hippocampal, amygdala and layer V cerebral cortex neurons. The Sumo knockdown mice displayed anxiety-like responses and were impaired in episodic memory processes, contextual and cued fear conditioning and fear-potentiated startle. LIMITATIONS:Since expression of Sumo1-3 was silenced in this mouse model, we need to verify in future studies which of the SUMO paralogues play the pivotal role in episodic and emotional memory. CONCLUSION:Our results indicate that a functional SUMO conjugation pathway is essential for emotionality and cognition. This novel Sumo knockdown mouse model and the technology used in generating this mutant may help to reveal novel mechanisms that underlie a variety of neuropsychiatric conditions associated with anxiety and impairment of episodic and emotional memory.Item Open Access Role of nicotinic receptors in the lateral habenula in the attenuation of amphetamine-induced prepulse inhibition deficits of the acoustic startle response in rats.(Psychopharmacology, 2015-08) Larrauri, José A; Burke, Dennis A; Hall, Brandon J; Levin, Edward DRationale
Prepulse inhibition (PPI) refers to the reduction of the startle response magnitude when a startling stimulus is closely preceded by a weak stimulus. PPI is commonly used to measure sensorimotor gating. In rats, the PPI reduction induced by the dopamine agonist apomorphine can be reversed by systemic administration of nicotine. A high concentration of nicotinic receptors is found in the lateral habenula (LHb), an epithalamic structure with efferent projections to brain regions involved in the modulation of PPI, which has been shown to regulate the activity of midbrain dopamine neurons.Objectives
The prospective role of nicotinic receptors in the LHb in the regulation of PPI was assessed in this study, using different pharmacological models of sensorimotor gating deficits.Methods
Interactions between systemic amphetamine and haloperidol and intra-LHb infusions of mecamylamine (10 μg/side) or nicotine (30 μg/side) on PPI were analyzed in Experiments 1 and 2. Intra-LHb infusions of different nicotine doses (25, and 50 μg/side) and their interactions with systemic administration of amphetamine or dizocilpine on PPI were examined in Experiments 3 and 4.Results
Infusions of nicotine into the LHb dose-dependently attenuated amphetamine-induced PPI deficits but had no effect on PPI disruptions caused by dizocilpine. Intra-LHb mecamylamine infusions did not affect PPI nor interact with dopaminergic manipulations.Conclusions
These results are congruent with previous reports of systemic nicotine effects on PPI, suggesting a role of the LHb in the attenuation of sensorimotor gating deficits caused by the hyperactivity of dopamine systems.Item Open Access Zebrafish show long-term behavioral impairments resulting from developmental vitamin D deficiency.(Physiology & behavior, 2020-10) Oliveri, Anthony N; Knuth, Megan; Glazer, Lilah; Bailey, Jordan; Kullman, Seth W; Levin, Edward DVitamin D has been shown in a wide variety of species to play critical roles in neurodevelopment. Vitamin D deficiency disrupts development of the brain and can cause lasting behavioral dysfunction. Zebrafish have become an important model for the study of development in general and neurodevelopment in particular. Zebrafish were used in the current study to characterize the effects of developmental vitamin D deficiency on behavioral function. Adult zebrafish that had been chronically fed a vitamin D deficient or replete diets were bred and the offspring were continued on those diets. The offspring were behaviorally tested as adults. In the novel tank diving test the vitamin D deficient diet significantly lowered the vertical position of fish indicative of more anxiety-like behavior. In the novel tank diving test swimming activity was also significantly decreased by vitamin D deficiency. Startle response was increased by developmental vitamin D deficiency during the early part of the test. No significant effects of vitamin D deficiency were seen with social affiliation and predatory stimulus avoidance tests. These results indicate a phenotype of vitamin D deficiency characterized by more anxiety-like behavior. This result was relatively specific inasmuch as few or no behavioral effects were seen in other behavioral tests.