Browsing by Subject "Respiratory Mechanics"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access An automated method for comparing motion artifacts in cine four-dimensional computed tomography images.(Journal of applied clinical medical physics, 2012-11-08) Cui, Guoqiang; Jew, Brian; Hong, Julian C; Johnston, Eric W; Loo, Billy W; Maxim, Peter GThe aim of this study is to develop an automated method to objectively compare motion artifacts in two four-dimensional computed tomography (4D CT) image sets, and identify the one that would appear to human observers with fewer or smaller artifacts. Our proposed method is based on the difference of the normalized correlation coefficients between edge slices at couch transitions, which we hypothesize may be a suitable metric to identify motion artifacts. We evaluated our method using ten pairs of 4D CT image sets that showed subtle differences in artifacts between images in a pair, which were identifiable by human observers. One set of 4D CT images was sorted using breathing traces in which our clinically implemented 4D CT sorting software miscalculated the respiratory phase, which expectedly led to artifacts in the images. The other set of images consisted of the same images; however, these were sorted using the same breathing traces but with corrected phases. Next we calculated the normalized correlation coefficients between edge slices at all couch transitions for all respiratory phases in both image sets to evaluate for motion artifacts. For nine image set pairs, our method identified the 4D CT sets sorted using the breathing traces with the corrected respiratory phase to result in images with fewer or smaller artifacts, whereas for one image pair, no difference was noted. Two observers independently assessed the accuracy of our method. Both observers identified 9 image sets that were sorted using the breathing traces with corrected respiratory phase as having fewer or smaller artifacts. In summary, using the 4D CT data of ten pairs of 4D CT image sets, we have demonstrated proof of principle that our method is able to replicate the results of two human observers in identifying the image set with fewer or smaller artifacts.Item Open Access Evaluation of integrated respiratory gating systems on a Novalis Tx system.(Journal of applied clinical medical physics, 2011-04-04) Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; Yin, Fang-FangThe purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can track motion and control radiation delivery with reasonable accuracy. The proposed single-exposure method has been demonstrated to be feasible in measuring time delay efficiently.Item Open Access Investigation of sliced body volume (SBV) as respiratory surrogate.(Journal of applied clinical medical physics, 2013-01-07) Cai, Jing; Chang, Zheng; O'Daniel, Jennifer; Yoo, Sua; Ge, Hong; Kelsey, Christopher; Yin, Fang-FangThe purpose of this study was to evaluate the sliced body volume (SBV) as a respiratory surrogate by comparing with the real-time position management (RPM) in phantom and patient cases. Using the SBV surrogate, breathing signals were extracted from unsorted 4D CT images of a motion phantom and 31 cancer patients (17 lung cancers, 14 abdominal cancers) and were compared to those clinically acquired using the RPM system. Correlation coefficient (R), phase difference (D), and absolute phase difference (D(A)) between the SBV-derived breathing signal and the RPM signal were calculated. 4D CT reconstructed based on the SBV surrogate (4D CT(SBV)) were compared to those clinically generated based on RPM (4D CT(RPM)). Image quality of the 4D CT were scored (S(SBV) and S(RPM), respectively) from 1 to 5 (1 is the best) by experienced evaluators. The comparisons were performed for all patients, and for the lung cancer patients and the abdominal cancer patients separately. RPM box position (P), breathing period (T), amplitude (A), period variability (V(T)), amplitude variability (V(A)), and space-dependent phase shift (F) were determined and correlated to S(SBV). The phantom study showed excellent match between the SBV-derived breathing signal and the RPM signal (R = 0.99, D= -3.0%, D(A) = 4.5%). In the patient study, the mean (± standard deviation (SD)) R, D, D(A), T, V(T), A, V(A), and F were 0.92 (± 0.05), -3.3% (± 7.5%), 11.4% (± 4.6%), 3.6 (± 0.8) s, 0.19 (± 0.10), 6.6 (± 2.8) mm, 0.20 (± 0.08), and 0.40 (± 0.18) s, respectively. Significant differences in R and D(A) (p = 0.04 and 0.001, respectively) were found between the lung cancer patients and the abdominal cancer patients. 4D CT(RPM) slightly outperformed 4D CT(SBV): the mean (± SD) S(RPM) and S(SBV) were 2.6 (± 0.6) and 2.9 (± 0.8), respectively, for all patients, 2.5 (± 0.6) and 3.1 (± 0.8), respectively, for the lung cancer patients, and 2.6 (± 0.7) and 2.8 (± 0.9), respectively, for the abdominal cancer patients. The difference between S(RPM) and S(SBV) was insignificant for the abdominal patients (p = 0.59). F correlated moderately with S(SBV) (r = 0.72). The correlation between SBV-derived breathing signal and RPM signal varied between patients and was significantly better in the abdomen than in the thorax. Space-dependent phase shift is a limiting factor of the accuracy of the SBV surrogate.