Browsing by Subject "Retina"
- Results Per Page
- Sort Options
Item Open Access A polyaxonal amacrine cell population in the primate retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014-03) Greschner, Martin; Field, Greg D; Li, Peter H; Schiff, Max L; Gauthier, Jeffrey L; Ahn, Daniel; Sher, Alexander; Litke, Alan M; Chichilnisky, EJAmacrine cells are the most diverse and least understood cell class in the retina. Polyaxonal amacrine cells (PACs) are a unique subset identified by multiple long axonal processes. To explore their functional properties, populations of PACs were identified by their distinctive radially propagating spikes in large-scale high-density multielectrode recordings of isolated macaque retina. One group of PACs exhibited stereotyped functional properties and receptive field mosaic organization similar to that of parasol ganglion cells. These PACs had receptive fields coincident with their dendritic fields, but much larger axonal fields, and slow radial spike propagation. They also exhibited ON-OFF light responses, transient response kinetics, sparse and coordinated firing during image transitions, receptive fields with antagonistic surrounds and fine spatial structure, nonlinear spatial summation, and strong homotypic neighbor electrical coupling. These findings reveal the functional organization and collective visual signaling by a distinctive, high-density amacrine cell population.Item Open Access Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2019-08) Wang, Tian; Pahlberg, Johan; Cafaro, Jon; Frederiksen, Rikard; Cooper, AJ; Sampath, Alapakkam P; Field, Greg D; Chen, JeannieA major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.Item Open Access Advances in color science: from retina to behavior.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010-11) Conway, Bevil R; Chatterjee, Soumya; Field, Greg D; Horwitz, Gregory D; Johnson, Elizabeth N; Koida, Kowa; Mancuso, KatherineColor has become a premier model system for understanding how information is processed by neural circuits, and for investigating the relationships among genes, neural circuits, and perception. Both the physical stimulus for color and the perceptual output experienced as color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incompletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color computations in the retina, primary visual cortex, and higher-order visual areas, focusing on non-human primates, a model of human color vision.Item Open Access Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium.(Translational vision science & technology, 2020-06-03) Thompson, Debra A; Iannaccone, Alessandro; Ali, Robin R; Arshavsky, Vadim Y; Audo, Isabelle; Bainbridge, James WB; Besirli, Cagri G; Birch, David G; Branham, Kari E; Cideciyan, Artur V; Daiger, Steven P; Dalkara, Deniz; Duncan, Jacque L; Fahim, Abigail T; Flannery, John G; Gattegna, Roberto; Heckenlively, John R; Heon, Elise; Jayasundera, K Thiran; Khan, Naheed W; Klassen, Henry; Leroy, Bart P; Molday, Robert S; Musch, David C; Pennesi, Mark E; Petersen-Jones, Simon M; Pierce, Eric A; Rao, Rajesh C; Reh, Thomas A; Sahel, Jose A; Sharon, Dror; Sieving, Paul A; Strettoi, Enrica; Yang, Paul; Zacks, David N; Monaciano ConsortiumMajor advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.Item Open Access Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings.(J Neurosci, 2015-03-18) Li, Peter H; Gauthier, Jeffrey L; Schiff, Max; Sher, Alexander; Ahn, Daniel; Field, Greg D; Greschner, Martin; Callaway, Edward M; Litke, Alan M; Chichilnisky, EJThis study combines for the first time two major approaches to understanding the function and structure of neural circuits: large-scale multielectrode recordings, and confocal imaging of labeled neurons. To achieve this end, we develop a novel approach to the central problem of anatomically identifying recorded cells, based on the electrical image: the spatiotemporal pattern of voltage deflections induced by spikes on a large-scale, high-density multielectrode array. Recordings were performed from identified ganglion cell types in the macaque retina. Anatomical images of cells in the same preparation were obtained using virally transfected fluorescent labeling or by immunolabeling after fixation. The electrical image was then used to locate recorded cell somas, axon initial segments, and axon trajectories, and these signatures were used to identify recorded cells. Comparison of anatomical and physiological measurements permitted visualization and physiological characterization of numerically dominant ganglion cell types with high efficiency in a single preparation.Item Open Access Angioarchitectural alterations in the retina and choroid in frontotemporal dementia.(PloS one, 2024-01) Allen, Ariana; Robbins, Cason B; Joseph, Suzanna; Hemesat, Angela; Kundu, Anita; Ma, Justin P; Haystead, Alice; Winslow, Lauren; Agrawal, Rupesh; Johnson, Kim G; Bozoki, Andrea C; Stinnett, Sandra S; Grewal, Dilraj S; Fekrat, SharonObjective
Frontotemporal dementia (FTD) is a progressive neurodegenerative disorder that affects the frontal and temporal lobes of the brain, leading to cognitive decline and personality changes. The objective of this cross-sectional study was to characterize angioarchitectural changes in the retina and choroid of individuals with FTD compared to cognitively normal controls using optical coherence tomography (OCT) and OCT angiography (OCTA).Methods
Cross-sectional comparison of patients with FTD and controls with normal cognition. All participants underwent Mini-Mental State Examination (MMSE) at the time of imaging. Outcome measures included OCT parameters: retinal nerve fiber layer (RNFL) thickness, ganglion cell layer-inner plexiform layer (GC-IPL) thickness, central subfield thickness (CST), subfoveal choroidal thickness (SFCT), choroidal vascularity index (CVI); and OCTA superficial capillary plexus parameters: foveal avascular zone (FAZ) area, 3x3mm and 6x6mm macular perfusion density (PD) and vessel density (VD), 4.5x4.5mm peripapillary capillary perfusion density (CPD) and capillary flux index (CFI). Generalized estimating equation analysis was used to account for the inclusion of 2 eyes from the same participant.Results
29 eyes of 19 patients with FTD and 85 eyes of 48 controls were analyzed. In FTD, 3x3mm macular PD (p = 0.02) and VD (p = 0.02) and CFI (p = 0.01) were reduced compared to controls. There was no difference in average 4.5x4.5mm CPD, RNFL thickness, GC-IPL thickness, CST, SFCT, CVI, FAZ, or 6x6mm VD or PD between FTD and controls (all p > 0.05); however, there was a trend toward lower macular 6x6mm PD and VD in patients with FTD.Conclusion
Decline of peripapillary and macular OCT and OCTA parameters merit further investigation as potential biomarkers for FTD detection. Noninvasive retinal and choroidal imaging may hold promise for earlier detection, and future longitudinal studies will clarify their role in monitoring of FTD.Item Open Access Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation.(Opt Express, 2010-08-30) Chiu, SJ; Li, XT; Nicholas, P; Toth, CA; Izatt, JA; Farsiu, SSegmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.Item Open Access Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems.(The Journal of cell biology, 1981-04) Skene, JH; Willard, MIn an effort to determine whether the "growth state" and the "mature state" of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the "GAP hypothesis" that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a "synaptogenic state" characterized by the transport of GAP-23 but not GAP-43, and an "axon elongation state" requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.Item Open Access Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity.(American journal of ophthalmology, 2020-11) Duncan, Jacque L; Liang, Wendi; Maguire, Maureen G; Audo, Isabelle; Ayala, Allison R; Birch, David G; Carroll, Joseph; Cheetham, Janet K; Esposti, Simona Degli; Durham, Todd A; Erker, Laura; Farsiu, Sina; Ferris, Frederick L; Heon, Elise; Hufnagel, Robert B; Iannaccone, Alessandro; Jaffe, Glenn J; Kay, Christine N; Michaelides, Michel; Pennesi, Mark E; Sahel, José-Alain; Foundation Fighting Blindness Consortium Investigator GroupPurpose
To report baseline visual fields in the Rate of Progression in USH2A-related Retinal Degeneration (RUSH2A) study.Design
Cross-sectional study within a natural history study.Methods
Setting: multicenter, international.Study population
Usher syndrome type 2 (USH2) (n = 80) or autosomal recessive nonsyndromic retinitis pigmentosa (ARRP) (n = 47) associated with biallelic disease-causing sequence variants in USH2A.Observation procedures
Repeatability of full-field static perimetry (SP) and between-eye symmetry of kinetic perimetry (KP) were evaluated with intraclass correlation coefficients (ICCs). The association of demographic and clinical characteristics with total hill of vision (VTOT) was assessed with general linear models. Associations between VTOT and other functional and morphologic measures were assessed using Spearman correlation coefficients and t tests.Main outcome measures
VTOT (SP) and III4e isopter area (KP).Results
USH2 participants had more severe visual field loss than ARRP participants (P < .001, adjusting for disease duration, age of enrollment). Mean VTOT measures among 3 repeat tests were 32.7 ± 24.1, 31.2 ± 23.4, and 31.7 ± 23.9 decibel-steradians (intraclass correlation coefficient [ICC] = 0.96). Better VA, greater photopic ERG 30-Hz flicker amplitudes, higher mean microperimetry sensitivity, higher central subfield thickness, absence of macular cysts, and higher III4e seeing area were associated with higher VTOT (all r > .48; P < .05). Mean III4e isopter areas for left (4561 ± 4426 squared degrees) and right eyes (4215 ± 4300 squared degrees) were concordant (ICC = 0.94).Conclusions
USH2 participants had more visual field loss than participants with USH2A-related ARRP, adjusting for duration of disease and age of enrollment. VTOT was repeatable and correlated with other functional and structural metrics, suggesting it may be a good summary measure of disease severity in patients with USH2A-related retinal degeneration.Item Open Access Cellular and Molecular Mechanisms of Retinal Neuron Spatial Patterning(2019) Kozlowski, ChristopherDuring development, cell-cell recognition events mediate crucial steps in the formation of organized cellular patterns critical for tissue function. In the nervous system, cell recognition cues guide migrating neurons during development to appropriate terminal locations and sculpt their characteristic sizes, shapes, and circuit connectivity. The retina contains a multitude of neuron types; however, neurons of the same cell type (homotypic) are patterned into evenly spaced arrangements known as “mosaics” across the retina surface. Disrupting mosaic formation impairs visual function, so it is important to understand the precise cellular and molecular mechanisms that allow homotypic neurons to recognize and adjust their proximity to neighbors. To understand this process, we studied two populations of interneurons, the OFF and ON starbursts amacrine cells (SACs), which require the cell-surface receptor MEGF10 to establish their mosaics. We find that SACs in Megf10 mutants still make lateral movements in the plane of the retina, but fail to recognize their proximity to homotypic neighbors. Using transgenic tools to visualize SACs early in development, we identify a transient developmental phase where SAC dendrite territories are bounded by homotypic somata, a relationship which is lost in SACs lacking MEGF10. Further, we determine that MEGF10 utilizes distinct signal transduction pathways in neurons from those identified in non-neuronal cells. Lastly, we demonstrate that specific amino acids within the intracellular domain of MEGF10 are required to recapitulate a cellular recognition-like event in a heterologous cell system. These findings support a model whereby MEGF10 signals in SACs by a distinct mechanism to mediate dendrite-soma interactions necessary to pattern the organization of retinal neurons.
Item Open Access Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells.(The Journal of cell biology, 1981-04) Skene, JH; Willard, MIn an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane-associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same period. Among these more slowly transported polypeptides, five were observed whose labeling increased much more than the average. Three of these five polypeptides resemble actin and alpha- and beta-tubulin in their electrophoretic properties.Item Open Access Death and the Construction of an Astrocyte Network(2019) Puñal, Vanessa MarieNaturally-occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the central nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type – the astrocyte – has rarely been studied. It is presently unclear whether astrocytes are subject to significant amounts of developmental death, or how it occurs. Here we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia kill and engulf astrocytes to mediate their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally-occurring cell death, and demonstrate its importance for formation and integrity of the retinal gliovascular network.
Item Open Access Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye(2012) Dhalla, AlHafeez ZahirOptical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use.
The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment.
In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.
Item Open Access Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors.(PLoS Genet, 2013-06) Cho, Kyoung-In; Haque, Mdemdadul; Wang, Jessica; Yu, Minzhong; Hao, Ying; Qiu, Sunny; Pillai, Indulekha CL; Peachey, Neal S; Ferreira, Paulo ANon-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+ -apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders.Item Open Access Dopaminergic modulation of retinal processing from starlight to sunlight.(Journal of pharmacological sciences, 2019-05-04) Roy, Suva; Field, Greg DNeuromodulators such as dopamine, enable context-dependent plasticity of neural circuit function throughout the central nervous system. For example, in the retina, dopamine tunes visual processing for daylight and nightlight conditions. Specifically, high levels of dopamine release in the retina tune vision for daylight (photopic) conditions, while low levels tune it for nightlight (scotopic) conditions. This review covers the cellular and circuit-level mechanisms within the retina that are altered by dopamine. These mechanisms include changes in gap junction coupling and ionic conductances, both of which are altered by the activation of diverse types of dopamine receptors across diverse types of retinal neurons. We contextualize the modulatory actions of dopamine in terms of alterations and optimizations to visual processing under photopic and scotopic conditions, with particular attention to how they differentially impact distinct cell types. Finally, we discuss how transgenic mice and disease models have shaped our understanding of dopaminergic signaling and its role in visual processing. Cumulatively, this review illustrates some of the diverse and potent mechanisms through which neuromodulation can shape brain function.Item Open Access Efficient coding of spatial information in the primate retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012-11) Doi, Eizaburo; Gauthier, Jeffrey L; Field, Greg D; Shlens, Jonathon; Sher, Alexander; Greschner, Martin; Machado, Timothy A; Jepson, Lauren H; Mathieson, Keith; Gunning, Deborah E; Litke, Alan M; Paninski, Liam; Chichilnisky, EJ; Simoncelli, Eero PSensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural responses. Here, we analyze the information that retinal ganglion cells transmit to the brain about the spatial information in natural images subject to three resource constraints: the number of retinal ganglion cells, their total response variances, and their total synaptic strengths. We derive a model that optimizes the transmitted information and compare it directly with measurements of complete functional connectivity between cone photoreceptors and the four major types of ganglion cells in the primate retina, obtained at single-cell resolution. We find that the ganglion cell population exhibited 80% efficiency in transmitting spatial information relative to the model. Both the retina and the model exhibited high redundancy (~30%) among ganglion cells of the same cell type. A novel and unique prediction of efficient coding, the relationships between projection patterns of individual cones to all ganglion cells, was consistent with the observed projection patterns in the retina. These results indicate a high level of efficiency with near-optimal redundancy in visual signaling by the retina.Item Open Access Enhanced Vasculature Imaging of the Retina Using Optical Coherence Tomography(2013) Hendargo, HansfordOptical coherence tomography (OCT) is a non-invasive imaging modality that uses low coherence interferometry to generate three-dimensional datasets of a sample's structure. OCT has found tremendous clinical applications in imaging the retina and has demonstrated great utility in the diagnosis of various retinal diseases. However, such diagnoses rely upon the ability to observe abnormalities in the structure of the retina caused by pathology. By the time an ocular disease has progressed to the point of affecting the morphology of the retina, irreversible vision loss in the eye may already occur. Changes in the functionality of the tissue often precede changes to the structure. Thus, if imaging methods are developed to provide additional functional information about the behavior and response of the retinal tissue and vasculature, earlier treatment for disease may be prescribed, thus preserving vision for the patient.
Within the last decade, significant technological advances in OCT systems have enabled high-speed and high sensitivity image acquisition using either spectral domain OCT (SDOCT) or swept-source OCT (SSOCT) configurations. Such systems use Fourier processing to extract structural information of a sample from interferometric principles. But such systems also have access to the optical phase information, which allows for functional analysis of sample dynamics. This dissertation details the development and application of methods using both intensity and phase information as a tool for studying interesting biological phenomena. The goal of this work is an extension of techniques to image the vasculature in the retina and enhance the clinical utility of OCT.
I first outline basic theory necessary for understanding the principles of OCT. I then describe OCT phase imaging in cellular applications as a demonstration of the ability of OCT to provide functional information on biological dynamics. Phase imaging methods suffer from an artifact known as phase wrapping, and I have developed a software technique to overcome this problem in OCT, thus extending its usefulness in providing quantitative information. I characterize the limitations in measuring moving scatterers with Doppler OCT in both SDOCT and SSOCT system. I also show the ability to image the vasculature in the retina using variance imaging with a high-speed retinal imaging system and software based methods to correct for patient motion and create a widefield mosaic in an automated manner. Finally, future directions for this work are discussed.
Item Open Access Function and Molecular Biology of the MEGF10 Cell Surface Protein in Retinal Neurons and Glia(2019) Wang, JingjingIn the central nervous system, billions of neurons interconnect with precision to form morphologically complex and functionally diverse neural circuits. The stereotypical fashion by which neurons assemble suggests that cell-surface molecular cues can act as identity tags during development. These cell surface receptors allow neurons to distinguish between circuit partners, incorrect connections and homotypic neighbors. Multiple EGF-like domains 10 (Megf10) was previously identified to mediate homotypic recognition of certain retinal cell types. Genetic evidence suggests that MEGF10 acts as both ligand and receptor to initiate cell-cell repulsion. Although its significance in cell-cell recognition has been demonstrated, the exact mechanism of how MEGF10 mediates mosaic formation remains unclear. Specifically, the biochemical basis of MEGF10-MEGF10 interaction is largely unknown nor do we have knowledge on what molecules are involved in signaling transduction. Further, MEGF10 is also expressed in glia cells, but it has not been tested if this MEGF10 recognition event is neuron specific.To address these questions, we decided to first characterize the molecular components of the MEGF10 complex. We determined MEGF10 complex composition through co-immunoprecipitation (co-IP) and chemical crosslinking and discovered that MEGF10 forms a lateral complex. Truncation and co-IP studies reveal that the interacting motifs are located on the ectodomain of MEGF10. Such binding is not restricted to MEGF10 as we also discovered hetero-multimers between MEGF10 and MEGF12. Next, to identify other molecules in the MEGF10 signaling pathway, we performed IP to isolate native MEGF10 interacting complexes and conducted proteomic analysis. We found previously known MEGF10-interacting molecules such as Dynamin1 and Traf4, as well as novel MEGF10 associating candidates. Our identification of interacting molecules that facilitate cytoskeletal and membrane rearrangement suggests that MEGF10 activates these cellular processes. Finally, we characterized Müller glia organization through a genetic-based labeling method. With a MEGF10 mutant mouse, we determined that MEGF10 is not necessary for glial array formation. We conclude that MEGF10 has distinct functions in neurons vs. glia. This study sets the stage to describe the molecular mechanism by which MEGF10 mediates cell-cell recognition, potentially uncovered novel MEGF10 interactions, and distinguishes MEGF10 neuronal function from its role in glia.
Item Open Access Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein).(Proc Natl Acad Sci U S A, 1987-12) Benovic, JL; Kühn, H; Weyand, I; Codina, J; Caron, MG; Lefkowitz, RJThe beta-adrenergic receptor kinase is an enzyme, possibly analogous to rhodopsin kinase, that multiply phosphorylates the beta-adrenergic receptor only when it is occupied by stimulatory agonists. Since this kinase may play an important role in mediating the process of homologous, or agonist-specific, desensitization, we investigated the functional consequences of receptor phosphorylation by the kinase and possible analogies with the mechanism of action of rhodopsin kinase. Pure hamster lung beta 2-adrenergic receptor, reconstituted in phospholipid vesicles, was assessed for its ability to mediate agonist-promoted stimulation of the GTPase activity of coreconstituted stimulatory guanine nucleotide-binding regulatory protein. When the receptor was phosphorylated by partially (approximately 350-fold) purified preparations of beta-adrenergic receptor kinase, as much as 80% inactivation of its functional activity was observed. However, the use of more highly purified enzyme preparations led to a dramatic decrease in the ability of phosphorylation to inactivate the receptor such that pure enzyme preparations (approximately 20,000-fold purified) caused only minimal (approximately 1off/- 7%) inactivation. Addition of pure retinal arrestin (48-kDa protein or S antigen), which is involved in enhancing the inactivating effect of rhodopsin phosphorylation by rhodopsin kinase, led to partial restoration of the functional effect of beta-adrenergic receptor kinase-promoted phosphorylation (41 +/- 3% inactivation). These results suggest the possibility that a protein analogous to retinal arrestin may exist in other tissues and function in concert with beta-adrenergic receptor kinase to regulate the activity of adenylate cyclase-coupled receptors.Item Open Access Functional Diversity of Retinal Ganglion Cells in the Rat(2017) Ravi, SnehaOne of the central problems in neuroscience is that there is a lack of understanding of the diversity and functions of cell types in the brain. Even in brain areas that have been studied extensively, such as the retina, much remains to be learned about the diversity and functions of cell types. Morphological, functional and genetic studies have yet to converge on a consistent picture of cell type diversity in the retina, because the field lacks a standardized approach to classify cell types. A systematic classification approach is essential to provide an unambiguous appreciation of cell type diversity, and a better understanding of the organization and function of the retina. In the first portion of this dissertation, we present a novel approach that classifies retinal ganglion cells (RGCs) in a quantitative, verifiable and reproducible manner. We utilize diverse visual stimuli and a multi-electrode array, to record simultaneously from multiple RGCs, and show that there are at least 13 RGC types with distinct functional properties. In the second portion of the dissertation, we present a quantitative determination and comparison of the spatiotemporal receptive field (RF) structures and neural coding properties across these RGC types. Determining the RF structure of RGC types is important, because it constrains the computations performed by retinal circuits and identifies the signals available to retinal recipient areas. We find that RGC types exhibit functional asymmetries in terms of their RF size, temporal integration, and response nonlinearities. We also show that no RGC types exhibited RFs that were strictly independent in space and time. These results provide several new insights into the computations performed in the rodent retina, and highlight the importance of understanding cell type diversity to further our understanding of how the retina works and the role it plays in visual processing.