Browsing by Subject "Retinal Pigment Epithelium"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Complement-Mediated Regulation of Apolipoprotein E in Cultured Human RPE Cells.(Investigative ophthalmology & visual science, 2017-06) Yang, Ping; Skiba, Nikolai P; Tewkesbury, Grace M; Treboschi, Victoria M; Baciu, Peter; Jaffe, Glenn JComplement activation is implicated in the pathogenesis of age-related macular degeneration (AMD). Apolipoprotein E (ApoE) and complement activation products such as membrane attack complex (MAC) are present in eyes of individuals with AMD. Herein, we investigated the effect of complement activation on induction of ApoE accumulation in human retinal pigment epithelial (RPE) cells.Cultured human RPE cells were primed with a complement-fixing antibody followed by treatment with C1q-depleted (C1q-Dep) human serum to elicit alternative pathway complement activation. Controls included anti-C5 antibody-treated serum and heat-inactivated C1q-Dep. Total protein was determined on RPE cell extracts, conditioned media, and extracellular matrix (ECM) by Western blot. ApoE and MAC colocalization was assessed on cultured RPE cells and human eyes by immunofluorescent stain. ApoE mRNA expression was evaluated by quantitative PCR (qPCR).Complement challenge upregulated cell-associated ApoE, but not apolipoprotein A1. ApoE accumulation was blocked by anti-C5 antibody and enhanced by repetitive complement challenge. ApoE mRNA levels were not affected by complement challenge. ApoE was frequently colocalized with MAC in complement-treated cells and drusen from human eyes. ApoE was released into complement-treated conditioned media after a single complement challenge and accumulated on ECM after repetitive complement challenge.Complement challenge induces time-dependent ApoE accumulation in RPE cells. An understanding of the mechanisms by which complement affects RPE ApoE accumulation may help to better explain drusen composition, and provide insights into potential therapeutic targets.Item Open Access Neuroprotection resulting from insufficiency of RANBP2 is associated with the modulation of protein and lipid homeostasis of functionally diverse but linked pathways in response to oxidative stress.(Dis Model Mech, 2010-09) Cho, Kyoung-in; Yi, Haiqing; Tserentsoodol, Nomingerel; Searle, Kelly; Ferreira, Paulo AOxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.Item Open Access PEDF Deletion Induces Senescence and Defects in Phagocytosis in the RPE.(International journal of molecular sciences, 2022-07) Rebustini, Ivan T; Crawford, Susan E; Becerra, S PatriciaThe retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for β-galactosidase. Senescence-associated β-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE.Item Open Access Resveratrol Protects Against Hydroquinone-Induced Oxidative Threat in Retinal Pigment Epithelial Cells.(Investigative ophthalmology & visual science, 2020-04) Neal, Samantha E; Buehne, Kristen L; Besley, Nicholas A; Yang, Ping; Silinski, Peter; Hong, Jiyong; Ryde, Ian T; Meyer, Joel N; Jaffe, Glenn JPurpose
Oxidative stress in retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells.Methods
Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison.Results
RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQ-treated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation.Conclusions
Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.Item Open Access Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration.(Experimental eye research, 2017-02) Iannaccone, Alessandro; Hollingsworth, TJ; Koirala, Diwa; New, David D; Lenchik, Nataliya I; Beranova-Giorgianni, Sarka; Gerling, Ivan C; Radic, Marko Z; Giorgianni, FrancescoWe report on a novel autoantigen expressed in human macular tissues, identified following an initial Western blot (WB)-based screening of sera from subjects with age-related macular degeneration (AMD) for circulating auto-antibodies (AAbs) recognizing macular antigens. Immunoprecipitation, 2D-gel electrophoresis (2D-GE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), direct enzyme-linked immunosorbent assays (ELISA), WBs, immunohistochemistry (IHC), human primary and ARPE-19 immortalized cell cultures were used to characterize this novel antigen. An approximately 40-kDa autoantigen in AMD was identified as the scavenger receptor CD5 antigen-like protein (CD5L), also known as apoptosis inhibitor of macrophage (AIM). CD5L/AIM was localized to human RPE by IHC and WB methods and to retinal microglial cells by IHC. ELISAs with recombinant CD5L/AIM on a subset of AMD sera showed a nearly 2-fold higher anti-CD5L/AIM reactivity in AMD vs. Control sera (p = 0.000007). Reactivity ≥0.4 was associated with 18-fold higher odds of having AMD (χ2 = 21.42, p = 0.00063). Circulating CD5L/AIM levels were also nearly 2-fold higher in AMD sera compared to controls (p = 0.0052). The discovery of CD5L/AIM expression in the RPE and in retinal microglial cells adds to the known immunomodulatory roles of these cells in the retina. The discovery of AAbs recognizing CD5L/AIM identifies a possible novel disease biomarker and suggest a potential role for CD5L/AIM in the pathogenesis of AMD in situ. The possible mechanisms via which anti-CD5L/AIM AAbs may contribute to AMD pathogenesis are discussed. In particular, since CD5L is known to stimulate autophagy and to participate in oxidized LDL uptake in macrophages, we propose that anti-CD5L/AIM auto-antibodies may play a role in drusen biogenesis and inflammatory RPE damage in AMD.Item Open Access Small Extracellular Vesicle-Associated MiRNAs in Polarized Retinal Pigmented Epithelium.(Investigative ophthalmology & visual science, 2024-11) Hernandez, Belinda J; Strain, Madison; Suarez, Maria Fernanda; Stamer, W Daniel; Ashley-Koch, Allison; Liu, Yutao; Klingeborn, Mikael; Bowes Rickman, CatherinePurpose
Oxidative stress in the retinal pigmented epithelium (RPE) has been implicated in age-related macular degeneration by impacting endocytic trafficking, including the formation, content, and secretion of extracellular vesicles (EVs). Using our model of polarized primary porcine RPE (pRPE) cells under chronic subtoxic oxidative stress, we tested the hypothesis that RPE miRNAs packaged into EVs are secreted in a polarized manner and contribute to maintaining RPE homeostasis.Methods
Small EVs (sEVs) enriched for exosomes were isolated from apical and basal conditioned media from pRPE cells grown for up to four weeks with or without low concentrations of hydrogen peroxide using two sEV isolation methods, leading to eight experimental groups. The sEV miRNA expression was profiled using miRNA-Seq with Illumina MiSeq, followed by quality control and bioinformatics analysis for differential expression using the R computing environment. Expression of selected miRNAs were validated using qRT-PCR.Results
We identified miRNA content differences carried by sEVs isolated using two ultracentrifugation-based methods. Regardless of the sEV isolation method, miR-182 and miR-183 were enriched in the cargo of apically secreted sEVs, and miR-122 in the cargo of basally secreted sEVs from RPE cells during normal homeostatic conditions. After oxidative stress, miR-183 levels were significantly decreased in the cargo of apically released sEVs from stressed RPE cells.Conclusions
We curated RPE sEV miRNA datasets based on cell polarity and oxidative stress. Unbiased miRNA analysis identified differences based on polarity, stress, and sEV isolation methods. These findings suggest that miRNAs in sEVs may contribute to RPE homeostasis and function in a polarized manner.