Browsing by Subject "SCIENCE"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A Collaborative Approach to Infant Research: Promoting Reproducibility, Best Practices, and Theory-Building.(Infancy : the official journal of the International Society on Infant Studies, 2017-07) Frank, Michael C; Bergelson, Elika; Bergmann, Christina; Cristia, Alejandrina; Floccia, Caroline; Gervain, Judit; Hamlin, J Kiley; Hannon, Erin E; Kline, Melissa; Levelt, Claartje; Lew-Williams, Casey; Nazzi, Thierry; Panneton, Robin; Rabagliati, Hugh; Soderstrom, Melanie; Sullivan, Jessica; Waxman, Sandra; Yurovsky, DanielThe ideal of scientific progress is that we accumulate measurements and integrate these into theory, but recent discussion of replicability issues has cast doubt on whether psychological research conforms to this model. Developmental research-especially with infant participants-also has discipline-specific replicability challenges, including small samples and limited measurement methods. Inspired by collaborative replication efforts in cognitive and social psychology, we describe a proposal for assessing and promoting replicability in infancy research: large-scale, multi-laboratory replication efforts aiming for a more precise understanding of key developmental phenomena. The ManyBabies project, our instantiation of this proposal, will not only help us estimate how robust and replicable these phenomena are, but also gain new theoretical insights into how they vary across ages, linguistic communities, and measurement methods. This project has the potential for a variety of positive outcomes, including less-biased estimates of theoretically important effects, estimates of variability that can be used for later study planning, and a series of best-practices blueprints for future infancy research.Item Open Access Marine resource management and conservation in the Anthropocene(Environmental Conservation, 2018-06-01) ASWANI, SHANKAR; BASURTO, XAVIER; FERSE, SEBASTIAN; GLASER, MARION; CAMPBELL, LISA; CINNER, JOSHUAE; DALTON, TRACEY; JENKINS, LEKELIAD; MILLER, MARCL; POLLNAC, RICHARD; VACCARO, ISMAEL; CHRISTIE, PATRICK© 2017 Foundation for Environmental Conservation. Because the Anthropocene by definition is an epoch during which environmental change is largely anthropogenic and driven by social, economic, psychological and political forces, environmental social scientists can effectively analyse human behaviour and knowledge systems in this context. In this subject review, we summarize key ways in which the environmental social sciences can better inform fisheries management policy and practice and marine conservation in the Anthropocene. We argue that environmental social scientists are particularly well positioned to synergize research to fill the gaps between: (1) local behaviours/needs/worldviews and marine resource management and biological conservation concerns; and (2) large-scale drivers of planetary environmental change (globalization, affluence, technological change, etc.) and local cognitive, socioeconomic, cultural and historical processes that shape human behaviour in the marine environment. To illustrate this, we synthesize the roles of various environmental social science disciplines in better understanding the interaction between humans and tropical marine ecosystems in developing nations where issues arising from human-coastal interactions are particularly pronounced. We focus on: (1) the application of the environmental social sciences in marine resource management and conservation; (2) the development of 'new' socially equitable marine conservation; (3) repopulating the seascape; (4) incorporating multi-scale dynamics of marine social-ecological systems; and (5) envisioning the future of marine resource management and conservation for producing policies and projects for comprehensive and successful resource management and conservation in the Anthropocene.Item Open Access The changing model of soil revisited(Soil Science Society of America Journal, 2012-06-14) De Richter, DB; Yaalon, DHIn 1961, the late Marlin G. Cline wrote a remarkable essay entitled, "The Changing Model of Soil" for the 25th Anniversary Issue of the Soil Science Society of America Proceedings. Cline was most impressed with how geomorphology was enriching pedology, and with the increasingly sophisticated views of soil time and of the processes of soil formation. We revisit Cline's general objectives by re-evaluating the changing model of soil from the perspective of the early 21st century, and by taking stock of the application of soil models to contemporary needs and challenges. Today, three ongoing changes in the genetic model of soil have far-reaching consequences for the future of soil science: (i) that soil is being transformed globally from natural to human-natural body, (ii) that the lower boundary of soil is much deeper than the solum historically confi ned to O to B horizons, and (iii) that most soils are a kind of pedogenic paleosol, archival products of soil-forming processes that have ranged widely over the life of most soils. Together and each in their own way, these three changes in the model of soil impact directly human-soil relations and give structure and guidance to the science of anthropedology. In other words, human forcings represent a global wave of soil polygenesis altering fluxes of matter and energy and transforming the thermodynamics of soils as potentially very deep systems. Anthropedogenesis needs much better quantifi cation to evaluate the future of soil and the wider environment. © Soil Science Society of America.Item Open Access Towards a global drylands observing system: Observational requirements and institutional solutions(Land Degradation & Development, 2011) Verstraete; MM; Hutchinson, CF; Grainger, A; Smith, M Stafford; Scholes, RJ; REYNOLDS, JF; Barbosa, P; Léon, A; Mbow, CQuantitative data on dryland changes and their effects on the people living there are required to support policymaking and environmental management at all scales. Data are regularly acquired by international, national or local entities, but presently exhibit specific gaps. Promoting sustainable development in drylands necessitates a much stronger integration, coordination and synthesis of available information. Space-based remote sensing systems continue to play an important role but do not fulfill all needs. Dedicated networks and observing systems, operating over a wide range of scales and resolutions, are needed to address the key issues that concern decision-makers at the scale of local communities, countries and the international community. This requires a mixture of 'bottom-up' and 'top-down' design principles, and multiple ownership of the resultant system. This paper reviews the limitations of current observing systems and suggests establishing a Global Drylands Observing System, which would capitalize on the achievements of systems already established to support the other Rio Conventions. This Global Drylands Observing System would provide an integrated, coherent entry point and user interface to a range of underlying information systems, identify and help generate missing information, propose a set of standards for the acquisition, archiving and distribution of data where these are lacking, evaluate the quality and reliability of these data and promote scientific research in these fields by improving access to data. The paper outlines the principles and main objectives of a Global Drylands Observing System and calls for renewed efforts to invigorate cooperation mechanisms between the many global environmental conventions. Copyright © 2010 John Wiley & Sons, Ltd.