Browsing by Subject "SIZE DISTRIBUTION"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Estimates and determinants of stocks of deep soil carbon in Gabon, Central Africa(Geoderma, 2019-05-01) Wade, AM; Richter, DD; Medjibe, VP; Bacon, AR; Heine, PR; White, LJT; Poulsen, JR© 2019 Despite the importance of tropical forest carbon to the global carbon cycle, research on carbon stocks is incomplete in major areas of the tropical world. Nowhere in the tropics is this more the case than in Africa, and especially Central Africa, where carbon stocks are known to be high but a scarcity of data limits understanding of carbon stocks and drivers. In this study, we present the first nation-wide measurements and determinants of soil carbon in Gabon, a nation in Central Africa. We estimated soil carbon to a 2-m depth using a systematic, random design of 59 plots located across Gabon. Soil carbon to a 2-m depth averaged 163 Mg ha −1 with a CV of 61%. These soil carbon stocks accounted for approximately half of the total carbon accumulated in aboveground biomass and soil pools. Nearly a third of soil carbon was stored in the second meter of soil, averaging 58 Mg ha −1 with a CV of 94%. Lithology, soil type, and terrain attributes were found to be significant predictors of cumulative SOC stocks to a 2-m depth. Current protocols of the IPCC are to sample soil carbon from the surface 30 cm, which in this study would underestimate soil carbon by 60% and underestimate ecosystem carbon by 30%. A nonlinear model using a power function predicted cumulative soil carbon stocks in the second meter with an average error of prediction of 3.2 Mg ha −1 (CV = 915%) of measured values. The magnitude and turnover of deep soil carbon in tropical forests needs to be estimated as more countries prioritize carbon accounting and monitoring in response to accelerating land-use change.Item Open Access Suspended Sediment Mineralogy and the Nature of Suspended Sediment Particles in Stormflow of the Southern Piedmont of the USA(Water Resources Research, 2019-01-01) River, M; Richardson, CJThe majority of annual sediment flux is transported during storm events in many watersheds across the world. Using X-ray diffraction, we analyzed the mineralogy of grab samples of suspended sediment during different stages of storm hydrographs in the Southern Piedmont. Mineralogy of suspended sediment changes drastically from quartz-dominated during the rising limb to clay dominated during the late falling limb/baseflow. Changes in mineralogy can shed insight into turbidity relationships, suspended sediment sources, energy versus supply-limited sediment transport, and other suspended sediment parameters such as anion exchange capacity and trace element chemistry. An unexpected key finding, confirmed by X-ray diffraction and electron microscopy, is that both kaolinite and quartz are primarily transported as discrete crystalline minerals of different size classes in our watersheds; this contrasts with existing scientific literature stating that in most fluvial systems suspended sediment is transported primarily as composite particles composed of a heterogeneous mix of all particle sizes. Our findings also support existing literature that turbidity can be a good proxy for elements such as P, which are preferentially adsorbed onto iron oxide coatings thus in situ turbidity probes have great potential to provide relatively inexpensive estimates of P flux when calibrated for specific watersheds.