Browsing by Subject "Salviniaceae"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Assessing phylogenetic relationships in extant heterosporous ferns (Salviniales), with a focus on Pilularia and Salvinia(Botanical Journal of the Linnean Society, 2008-08-01) Nagalingum, NS; Nowak, MD; Pryer, KMHeterosporous ferns (Salviniales) are a group of approximately 70 species that produce two types of spores (megaspores and microspores). Earlier broad-scale phylogenetic studies on the order typically focused on one or, at most, two species per genus. In contrast, our study samples numerous species for each genus, wherever possible, accounting for almost half of the species diversity of the order. Our analyses resolve Marsileaceae, Salviniaceae and all of the component genera as monophyletic. Salviniaceae incorporate Salvinia and Azolla; in Marsileaceae, Marsilea is sister to the clade of Regnellidium and Pilularia - this latter clade is consistently resolved, but not always strongly supported. Our individual species-level investigations for Pilularia and Salvinia, together with previously published studies on Marsilea and Azolla (Regnellidium is monotypic), provide phylogenies within all genera of heterosporous ferns. The Pilularia phylogeny reveals two groups: Group I includes the European taxa P. globulifera and P. minuta; Group II consists of P. americana, P. novae-hollandiae and P. novae-zelandiae from North America, Australia and New Zealand, respectively, and are morphologically difficult to distinguish. Based on their identical molecular sequences and morphology, we regard P. novae-hollandiae and P. novae-zelandiae to be conspecific; the name P. novae-hollandiae has nomenclatural priority. The status of P. americana requires further investigation as it consists of two geographically and genetically distinct North American groups and also shows a high degree of sequence similarity to P. novae-hollandiae. Salvinia also comprises biogeographically distinct units - a Eurasian group (S. natans and S. cucullata) and an American clade that includes the noxious weed S. molesta, as well as S. oblongifolia and S. minima. © 2008 The Linnean Society of London.Item Open Access Comparative morphology of reproductive structures in heterosporous water ferns and a reevaluation of the sporocarp(International Journal of Plant Sciences, 2006-07-01) Nagalingum, NS; Schneider, H; Pryer, KMHeterosporous water ferns (Marsileaceae and Salviniaceae) are the only extant group of plants to have evolved heterospory since the Paleozoic. These ferns possess unusual reproductive structures traditionally termed "sporocarps." Using an evolutionary framework, we critically examine the complex homology issues pertaining to these structures. Comparative morphological study reveals that all heterosporous ferns bear indusiate sori on a branched, nonlaminate structure that we refer to as the sorophore; this expanded definition highlights homology previously obscured by the use of different terms. By using a homology-based concept, we aim to discontinue the use of historically and functionally based morphological terminology. We recognize the sorophore envelope as a structure that surrounds the sorophore and sori. The sorophore envelope is present in Marsileaceae as a sclerenchymatous sporocarp wall and in Azolla as a parenchymatous layer, but it is absent in Salvinia. Both homology assessments and phylogenetic character-state reconstructions using the Cretaceous fossil Hydropteris are consistent with a single origin of the sorophore envelope in heterosporous ferns. Consequently, we restrict the term "sporocarp" to a sorophore envelope and all it contains. Traditional usage of "sporocarp" is misleading because it implies homology for nonhomologous structures, and structures historically called sporocarps in Salviniaceae are more appropriately referred to as sori. © 2006 by The University of Chicago. All rights reserved.Item Open Access Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae)(International Journal of Plant Sciences, 2007-10-22) Metzgar, JS; Schneider, H; Pryer, KMA phylogeny for all extant species of the heterosporous fern genus Azolla is presented here based on more than 5000 base pairs of DNA sequence data from six plastid loci (rbcL, atpB, rps4, trnL-trnF, trnG-trnR, and rps4-trnS). Our results are in agreement with other recent molecular phylogenetic hypotheses that support the monophyly of sections Azolla and Rhizosperma and the proposed relationships within section Azolla. Divergence times are estimated within Azolla using a penalized likelihood approach, integrating data from fossils and DNA sequences. Penalized likelihood analyses estimate a divergence time of 50.7 Ma (Eocene) for the split between sections Azolla and Rhizosperma, 32.5 Ma (Oligocene) for the divergence of Azolla nilotica from A. pinnata within section Rhizosperma, and 16.3 Ma (Miocene) for the divergence of the two lineages within section Azolla (the A. filiculoides + A. rubra lineage from the A. caroliniana + A. microphylla + A. mexicana complex). © 2007 by The University of Chicago. All rights reserved.Item Open Access Phylogeny of Marsileaceous Ferns and Relationships of the Fossil Hydropteris pinnata Reconsidered.(International journal of plant sciences, 1999-09) Pryer, KMRecent phylogenetic studies have provided compelling evidence that confirms the once disputed hypothesis of monophyly for heterosporous leptosporangiate ferns (Marsileaceae and Salviniaceae). Hypotheses for relationships among the three genera of Marsileaceae (Marsilea, Regnellidium, and Pilularia), however, have continued to be in conflict. The phylogeny of Marsileaceae is investigated here using information from morphology and rbcL sequence data. In addition, relationships among all heterosporous ferns, including the whole-plant fossil Hydropteris pinnata are reconsidered. Data sets of 71 morphological and 1239 rbcL characters for 23 leptosporangiate ferns, including eight heterosporous ingroup taxa and 15 homosporous outgroup taxa, were subjected to maximum parsimony analysis. Morphological analyses were carried out both with and without the fossil Hydropteris, and it was excluded from all analyses with rbcL data. An annotated list of the 71 morphological characters is provided in the appendix. For comparative purposes, the Rothwell and Stockey (1994) data set was also reanalyzed here. The best estimate of phylogenetic relationships for Marsileaceae in all analyses is that Pilularia and Regnellidium are sister taxa and Marsilea is sister to that clade. Morphological synapomorphies for various nodes are discussed. Analyses that included Hydropteris resulted in two most-parsimonious trees that differ only in the placement of the fossil. One topology is identical to the relationship found by Rothwell and Stockey (1994), placing the fossil sister to the Azolla plus Salvinia clade. The alternative topology places Hydropteris as the most basal member of the heterosporous fern clade. Equivocal interpretations for character evolution in heterosporous ferns are discussed in the context of these two most-parsimonious trees. Because of the observed degree of character ambiguity, the phylogenetic placement of Hydropteris is best viewed as unresolved, and recognition of the suborder Hydropteridineae, as circumscribed by Rothwell and Stockey (1994), is regarded as premature. The two competing hypotheses of relationships for heterosporous ferns are also compared with the known temporal distribution of relevant taxa. Stratigraphic fit of the phylogenetic estimates is measured by using the Stratigraphic Consistency Index and by comparison with minimum divergence times.