Browsing by Subject "Sarcoma"
- Results Per Page
- Sort Options
Item Open Access A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma.(Theranostics, 2016) Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William CThe treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.Item Open Access A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.(Theranostics, 2015) Liu, Yang; Ashton, Jeffrey R; Moding, Everett J; Yuan, Hsiangkuo; Register, Janna K; Fales, Andrew M; Choi, Jaeyeon; Whitley, Melodi J; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R; Kirsch, David G; Badea, Cristian T; Vo-Dinh, TuanNanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.Item Open Access Animal models of soft-tissue sarcoma.(Dis Model Mech, 2010-09) Dodd, Rebecca D; Mito, Jeffery K; Kirsch, David GSoft-tissue sarcomas (STSs) are rare mesenchymal tumors that arise from muscle, fat and connective tissue. Currently, over 75 subtypes of STS are recognized. The rarity and heterogeneity of patient samples complicate clinical investigations into sarcoma biology. Model organisms might provide traction to our understanding and treatment of the disease. Over the past 10 years, many successful animal models of STS have been developed, primarily genetically engineered mice and zebrafish. These models are useful for studying the relevant oncogenes, signaling pathways and other cell changes involved in generating STSs. Recently, these model systems have become preclinical platforms in which to evaluate new drugs and treatment regimens. Thus, animal models are useful surrogates for understanding STS disease susceptibility and pathogenesis as well as for testing potential therapeutic strategies.Item Embargo Developing Strategies to Evaluate Autochthonous Tumor-Specific Immune Responses(2024) Himes, JonathonThe adaptive immune system plays a crucial role in combating tumors through immunosurveillance and responding to immunotherapies. However, many studies investigating the anti-tumor immune response focus primarily on tumor-infiltrating lymphocytes (TILs), which often lack specificity for the antigenic epitopes presented on tumor cells, making them less relevant for effective anti-tumor immunity. To gain insights into novel immunotherapeutic targets and biomarkers of response, it is essential to characterize the phenotypic features and dysfunctional mechanisms of tumor-specific T cell populations. This requires the use of tumor models that express known neoantigens in order to study tumor-specific T cell responses in vivo. While transplant models with known neoantigen expression are widely used, there is a limitation in the availability of autochthonous tumor models where the tumor coevolves with the immune system. In this dissertation, various approaches to studying the tumor-specific immune response in the autochthonous setting are presented and discussed. One such approach that has been developed involves combining CRISPR/Cas9 and sleeping beauty transposase technology to create an autochthonous orthotopic murine sarcoma model. This model incorporates key genetic elements such as oncogenic KrasG12D, functionally impaired p53, and the expression of known MHCI and MHCII sarcoma neoantigens. By utilizing MHC tetramer flow cytometry, a tumor-specific immune response in the peripheral blood was identified as early as 10 days after tumor induction, leading to effective tumor clearance. Interestingly, when CD8 and CD4 T cells were co-depleted, tumors developed at a high penetrance. However, depleting either CD8 or CD4 T cells alone was insufficient to permit tumor growth. These findings indicate that both CD8 and CD4 T cells can independently contribute to immunosurveillance and participate in the clearance of sarcomas expressing MHCI and MHCII neoantigens. Understanding the tumor-specific immune response in autochthonous models is crucial for uncovering new targets for immunotherapy and identifying biomarkers of response. The development of the autochthonous orthotopic murine sarcoma model described in this dissertation provides a valuable tool for investigating the mechanisms and characteristics of tumor-specific T cell responses in an in vivo setting.
Item Open Access Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.(Physics in medicine and biology, 2020-10-21) Holbrook, MD; Clark, DP; Badea, CTPreclinical micro-CT provides a hotbed in which to develop new imaging technologies, including spectral CT using photon counting detector (PCD) technology. Spectral imaging using PCDs promises to expand x-ray CT as a functional imaging modality, capable of molecular imaging, while maintaining CT's role as a powerful anatomical imaging modality. However, the utility of PCDs suffers due to distorted spectral measurements, affecting the accuracy of material decomposition. We attempt to improve material decomposition accuracy using our novel hybrid dual-source micro-CT system which combines a PCD and an energy integrating detector. Comparisons are made between PCD-only and hybrid CT results, both reconstructed with our iterative, multi-channel algorithm based on the split Bregman method and regularized with rank-sparse kernel regression. Multi-material decomposition is performed post-reconstruction for separation of iodine (I), gold (Au), gadolinium (Gd), and calcium (Ca). System performance is evaluated first in simulations, then in micro-CT phantoms, and finally in an in vivo experiment with a genetically modified p53fl/fl mouse cancer model with Au, Gd, and I nanoparticle (NP)-based contrasts agents. Our results show that the PCD-only and hybrid CT reconstructions offered very similar spatial resolution at 10% MTF (PCD: 3.50 lp mm-1; hybrid: 3.47 lp mm-1) and noise characteristics given by the noise power spectrum. For material decomposition we note successful separation of the four basis materials. We found that hybrid reconstruction reduces RMSE by an average of 37% across all material maps when compared to PCD-only of similar dose but does not provide much difference in terms of concentration accuracy. The in vivo results show separation of targeted Au and accumulated Gd NPs in the tumor from intravascular iodine NPs and bone. Hybrid spectral micro-CT can benefit nanotechnology and cancer research by providing quantitative imaging to test and optimize various NPs for diagnostic and therapeutic applications.Item Open Access Hybrid spectral CT reconstruction.(PLoS One, 2017) Clark, Darin P; Badea, Cristian TCurrent photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral separation on the order of the energy resolution of the PCD hardware.Item Open Access Metabolic Modulators of Soft Tissue Sarcomas(2019-04-22) Kadakia, KushalThis investigation characterizes the metabolic dependencies of soft tissue sarcomas and evaluates potential therapeutic implications for radiation therapy. Mice were genetically engineered to utilize the Cre/LoxP system, with Cre fused to the estrogen receptor and expressed from the Pax7 promoter in muscle satellite cells. Intramuscular delivery of 4-hydroxytamoxifen to the gastrocnemius muscle enabled Cre to translocate to the nucleus to delete the Trp53 tumor suppressor and activate oncogenic Nras to generate sarcomas. Infusions with 13C-labeled nutrients in tumor-bearing mice revealed glutamine and glucose to be the primary substrates for the Tricarboxylic Acid Cycle in sarcomas. However, metabolomic analysis post-radiation treatment indicated that radiation response in sarcomas was characterized by a shift away from glucose consumption and towards glutamine metabolism. Inhibition of glutamine catabolism in sarcoma cell lines via nutrient restriction, pharmacological blockade, and genetic deletion impaired tumor proliferation. Clonogenic assays demonstrated that glutamine restriction also reduced in vitro survival following radiation exposure. To validate these phenotypes in vivo, the Cre/LoxP system was used to generate mice with sarcomas deficient in glutaminase (Gls), the enzyme governing the rate-limiting reaction for glutamine catabolism. Cohorts of tumor-bearing irradiated and untreated mice were then followed to evaluate the effect of Gls deletion on survival. Collectively, the results from this study demonstrate that (1) glutamine is critical for sarcoma cell growth in vitro and in vivo and (2) inhibition of Gls has the potential to enhance the radiosensitivity of sarcomas.Item Open Access MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice.(Tomography (Ann Arbor, Mich.), 2020-03) Holbrook, MD; Blocker, SJ; Mowery, YM; Badea, A; Qi, Y; Xu, ES; Kirsch, DG; Johnson, GA; Badea, CTSmall-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer therapies. However, considerable variability in image analysis techniques can lead to inconsistent results. We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to 6 months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most indicative of radiation therapy effects; the second radiomics analysis looked for features that might predict primary tumor recurrence. The segmentation results indicated that Dice scores were similar when using multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area, radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when studying new cancer therapies.Item Open Access Myxoid Liposarcoma: Models and Mechanisms of Sarcomagenesis and Response to Radiation Therapy(2021) Chen, Mark ShuoMyxoid liposarcoma (MLPS) is a malignant soft tissue sarcoma characterized by a pathognomonic t(12;16)(q13;p11) translocation that produces a fusion oncoprotein, FUS-CHOP. This cancer is remarkably sensitive to radiotherapy and exhibits a unique pattern of extrapulmonary metastasis. However, the mechanism for its radiosensitivity is unknown. In order to further understand the biological mechanisms underlying MLPS response to radiotherapy we studied the fusion oncoprotein FUS-CHOP and linked its role in sarcomagenesis to the radiosensitivity phenotype.
Here we investigate a molecular mechanism of radiosensitization that couples ionizing radiation to inhibition of translocation-driven sarcomagenesis in myxoid liposarcoma. We performed co-immunoprecipitation (co-IP) to identify proteins interacting with FUS-CHOP. Incucyte assays measured cell proliferation after knockdown of interacting proteins fusion-negative and fusion-positive primary murine sarcoma cell lines from a novel FUS-CHOP genetically engineered mouse model (GEMM). ChIP-seq/CUT&RUN mapped genome-wide binding sites of FUS-CHOP and identified DNA-binding motifs for the fusion oncoprotein. Co-IP of irradiated human MLPS cell lines were performed to evaluate post-translational modification of FUS-CHOP after irradiation, and to investigate regulation of protein-protein interactions by these modifications.
We detected functionally important interactions between FUS-CHOP and multiple chromatin remodeling complexes via co-IP including a new interaction with SNF2H, the ATPase subunit of the imitation switch (ISWI) complex. Using knockdown systems, we demonstrated that these interacting chromatin remodelers are functionally important for proliferation specifically in FUS-CHOP-driven, but not Kras-driven murine sarcoma cells. ChIP-seq and CUT&RUN profiling of human MLPS cell lines identified DNA-binding motifs and genomic loci targeted by FUS-CHOP, which co-localized with SNF2H and H3K27ac marks of active chromatin. We further hypothesized that post-translational modification of the FUS-CHOP PrLD may regulate the protein-protein interactions between FUS-CHOP and chromatin remodelers. Using irradiated human MLPS cell lines, we show that FUS-CHOP is a target of phosphorylation by the DNA damage response kinases DNA-PK and ATM after irradiation. Finally, we show that phosphorylation of the PrLD of FUS-CHOP diminishes protein-protein interactions with chromatin remodeling complexes and the ability for FUS-CHOP to transform NIH-3T3 cells.
We also report the generation and characterization of a spatially and temporally restricted mouse model of sarcoma driven by FUS-CHOP. Using different Cre-drivers in the adipocyte lineage, we initiated in vivo tumorigenesis by expressing FUS-CHOP in Prrx1+ mesenchymal progenitor cells. In contrast, expression of FUS-CHOP in more differentiated cells does not form tumors in vivo, and early expression of the oncoprotein during embryogenesis is lethal. We also employ in vivo electroporation and CRISPR technology to rapidly generate spatially and temporally restricted mouse models and cell lines of high grade FUS-CHOP-driven sarcomas for preclinical studies.
Item Open Access Neoadjuvant Radiation Therapy and Surgery Improves Metastasis-Free Survival over Surgery Alone in a Primary Mouse Model of Soft Tissue Sarcoma.(Molecular cancer therapeutics, 2023-01) Patel, Rutulkumar; Mowery, Yvonne M; Qi, Yi; Bassil, Alex M; Holbrook, Matt; Xu, Eric S; Hong, Cierra S; Himes, Jonathon E; Williams, Nerissa T; Everitt, Jeffrey; Ma, Yan; Luo, Lixia; Selitsky, Sara R; Modliszewski, Jennifer L; Gao, Junheng; Jung, Sin-Ho; Kirsch, David G; Badea, Cristian TThis study aims to investigate whether adding neoadjuvant radiotherapy (RT), anti-programmed cell death protein-1 (PD-1) antibody (anti-PD-1), or RT + anti-PD-1 to surgical resection improves disease-free survival for mice with soft tissue sarcomas (STS). We generated a high mutational load primary mouse model of STS by intramuscular injection of adenovirus expressing Cas9 and guide RNA targeting Trp53 and intramuscular injection of 3-methylcholanthrene (MCA) into the gastrocnemius muscle of wild-type mice (p53/MCA model). We randomized tumor-bearing mice to receive isotype control or anti-PD-1 antibody with or without radiotherapy (20 Gy), followed by hind limb amputation. We used micro-CT to detect lung metastases with high spatial resolution, which was confirmed by histology. We investigated whether sarcoma metastasis was regulated by immunosurveillance by lymphocytes or tumor cell-intrinsic mechanisms. Compared with surgery with isotype control antibody, the combination of anti-PD-1, radiotherapy, and surgery improved local recurrence-free survival (P = 0.035) and disease-free survival (P = 0.005), but not metastasis-free survival. Mice treated with radiotherapy, but not anti-PD-1, showed significantly improved local recurrence-free survival and metastasis-free survival over surgery alone (P = 0.043 and P = 0.007, respectively). The overall metastasis rate was low (∼12%) in the p53/MCA sarcoma model, which limited the power to detect further improvement in metastasis-free survival with addition of anti-PD-1 therapy. Tail vein injections of sarcoma cells into immunocompetent mice suggested that impaired metastasis was due to inability of sarcoma cells to grow in the lungs rather than a consequence of immunosurveillance. In conclusion, neoadjuvant radiotherapy improves metastasis-free survival after surgery in a primary model of STS.Item Open Access Neoadjuvant Radiation Therapy and Surgery Improves Metastasis-Free Survival over Surgery Alone in a Primary Mouse Model of Soft Tissue Sarcoma.(Molecular cancer therapeutics, 2023-01) Patel, Rutulkumar; Mowery, Yvonne M; Qi, Yi; Bassil, Alex M; Holbrook, Matt; Xu, Eric S; Hong, Cierra S; Himes, Jonathon E; Williams, Nerissa T; Everitt, Jeffrey; Ma, Yan; Luo, Lixia; Selitsky, Sara R; Modliszewski, Jennifer L; Gao, Junheng; Jung, Sin-Ho; Kirsch, David G; Badea, Cristian TThis study aims to investigate whether adding neoadjuvant radiotherapy (RT), anti-programmed cell death protein-1 (PD-1) antibody (anti-PD-1), or RT + anti-PD-1 to surgical resection improves disease-free survival for mice with soft tissue sarcomas (STS). We generated a high mutational load primary mouse model of STS by intramuscular injection of adenovirus expressing Cas9 and guide RNA targeting Trp53 and intramuscular injection of 3-methylcholanthrene (MCA) into the gastrocnemius muscle of wild-type mice (p53/MCA model). We randomized tumor-bearing mice to receive isotype control or anti-PD-1 antibody with or without radiotherapy (20 Gy), followed by hind limb amputation. We used micro-CT to detect lung metastases with high spatial resolution, which was confirmed by histology. We investigated whether sarcoma metastasis was regulated by immunosurveillance by lymphocytes or tumor cell-intrinsic mechanisms. Compared with surgery with isotype control antibody, the combination of anti-PD-1, radiotherapy, and surgery improved local recurrence-free survival (P = 0.035) and disease-free survival (P = 0.005), but not metastasis-free survival. Mice treated with radiotherapy, but not anti-PD-1, showed significantly improved local recurrence-free survival and metastasis-free survival over surgery alone (P = 0.043 and P = 0.007, respectively). The overall metastasis rate was low (∼12%) in the p53/MCA sarcoma model, which limited the power to detect further improvement in metastasis-free survival with addition of anti-PD-1 therapy. Tail vein injections of sarcoma cells into immunocompetent mice suggested that impaired metastasis was due to inability of sarcoma cells to grow in the lungs rather than a consequence of immunosurveillance. In conclusion, neoadjuvant radiotherapy improves metastasis-free survival after surgery in a primary model of STS.Item Open Access Structured Illumination Microscopy and a Quantitative Image Analysis for the Detection of Positive Margins in a Pre-Clinical Genetically Engineered Mouse Model of Sarcoma.(2016) Fu, H; Mueller, J; Whitley, M; Cardona, D; Willett, R; Kirsch, D; Brown, Q; Ramanujam, NIntraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.Item Open Access Using Novel Genetically Engineered Mouse Models of Soft Tissue Sarcoma to Interrogate the Contribution of Cell of Origin and Tissue Injury to Sarcoma Development(2015) Stephens, Leonor AnoSoft tissue sarcomas (STSs) are a heterogeneous group of mesenchymal tumors comprised of >70 subtypes. An important question is how the cell of origin and the pathways to tumor development shape the broad array of STS subtypes. By forcing identical tumor-promoting mutations to different cell types in Genetically Engineered Mouse Models (GEMMs) of STS, I have a unique model system to investigate this question. In the process of performing these experiments I observed that genetic mutations are necessary, but not sufficient for rapid sarcoma formation. However, tissue injury dramatically accelerates sarcoma formation in our GEMM of STS. For my thesis, I have worked to understand how cell of origin affects sarcoma subtype and how the microenvironment in our models promotes transformation. I have observed that cell of origin plays an important, but not the only, role in defining STS subtype. Additionally, I have concluded that the microenvironment, and specifically the HGF/c-MET signaling pathway play a crucial role in promoting sarcoma development after acute tissue injury.