Browsing by Subject "Sea Urchins"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.(Development, 2010-01) Croce, Jenifer C; McClay, David REndomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.Item Open Access EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms.(BMC Bioinformatics, 2016-01-22) Janies, Daniel A; Witter, Zach; Linchangco, Gregorio V; Foltz, David W; Miller, Allison K; Kerr, Alexander M; Jay, Jeremy; Reid, Robert W; Wray, Gregory ABACKGROUND: One of our goals for the echinoderm tree of life project (http://echinotol.org) is to identify orthologs suitable for phylogenetic analysis from next-generation transcriptome data. The current dataset is the largest assembled for echinoderm phylogeny and transcriptomics. We used RNA-Seq to profile adult tissues from 42 echinoderm specimens from 24 orders and 37 families. In order to achieve sampling members of clades that span key evolutionary divergence, many of our exemplars were collected from deep and polar seas. DESCRIPTION: A small fraction of the transcriptome data we produced is being used for phylogenetic reconstruction. Thus to make a larger dataset available to researchers with a wide variety of interests, we made a web-based application, EchinoDB (http://echinodb.uncc.edu). EchinoDB is a repository of orthologous transcripts from echinoderms that is searchable via keywords and sequence similarity. CONCLUSIONS: From transcripts we identified 749,397 clusters of orthologous loci. We have developed the information technology to manage and search the loci their annotations with respect to the Sea Urchin (Strongylocentrotus purpuratus) genome. Several users have already taken advantage of these data for spin-off projects in developmental biology, gene family studies, and neuroscience. We hope others will search EchinoDB to discover datasets relevant to a variety of additional questions in comparative biology.Item Open Access Near-Chromosomal-Level Genome Assembly of the Sea Urchin Echinometra lucunter, a Model for Speciation in the Sea.(Genome biology and evolution, 2023-06) Davidson, Phillip L; Lessios, Harilaos A; Wray, Gregory A; McMillan, W Owen; Prada, CarlosEchinometra lucunter, the rock-boring sea urchin, is a widely distributed echinoid and a model for ecological studies of reproduction, responses to climate change, and speciation. We present a near chromosome-level genome assembly of E. lucunter, including 21 scaffolds larger than 10 Mb predicted to represent each of the chromosomes of the species. The 760.4 Mb assembly includes a scaffold N50 of 30.0 Mb and BUSCO (benchmarking universal single-copy orthologue) single copy and a duplicated score of 95.8% and 1.4%, respectively. Ab-initio gene model prediction and annotation with transcriptomic data constructed 33,989 gene models composing 50.4% of the assembly, including 37,036 transcripts. Repetitive elements make up approximately 39.6% of the assembly, and unresolved gap sequences are estimated to be 0.65%. Whole genome alignment with Echinometra sp. EZ revealed high synteny and conservation between the two species, further bolstering Echinometra as an emerging genus for comparative genomics studies. This genome assembly represents a high-quality genomic resource for future evolutionary and developmental studies of this species and more broadly of echinoderms.