Browsing by Subject "Sensory Receptor Cells"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Activity of neurons in monkey globus pallidus during oculomotor behavior compared with that in substantia nigra pars reticulata.(J Neurophysiol, 2010-04) Shin, SooYoon; Sommer, Marc AThe basal ganglia are a subcortical assembly of nuclei involved in many aspects of behavior. Three of the nuclei have high firing rates and inhibitory influences: the substantia nigra pars reticulata (SNr), globus pallidus interna (GPi), and globus pallidus externa (GPe). The SNr contains a wide range of visual, cognitive, and motor signals that have been shown to contribute to saccadic eye movements. Our hypothesis was that GPe and GPi neurons carry similarly diverse signals during saccadic behavior. We recorded from GPe, GPi, and SNr neurons in monkeys that made memory-guided saccades and found that neurons in all three structures had increases or decreases in activity synchronized with saccade generation, visual stimulation, or reward. Comparing GPe neurons with GPi neurons, we found relatively more visual-related activity in GPe and more reward-related activity in GPi. Comparing both pallidal samples with the SNr, we found a greater resemblance between GPe and SNr neurons than that between GPi and SNr neurons. As expected from a known inhibitory projection from GPe to SNr, there was a general reversal of sign in activity modulations between the structures: bursts of activity were relatively more common in GPe and pauses more common in SNr. We analyzed the response fields of neurons in all three structures and found relatively narrow and lateralized fields early in trials (during visual and saccadic events) followed by a broadening later in trials (during reward). Our data reinforce an emerging, new consensus that the GPe and GPi, in addition to the SNr, contribute to oculomotor behavior.Item Open Access Cysteine proteinase-1 and cut protein isoform control dendritic innervation of two distinct sensory fields by a single neuron.(Cell Rep, 2014-03-13) Lyons, Gray R; Andersen, Ryan O; Abdi, Khadar; Song, Won-Seok; Kuo, Chay TDendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.Item Open Access Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond.(Autophagy, 2010-08) Zhou, Xiang; Wang, FanPIK3C3/Vps34 plays important roles in the endocytic and autophagic pathways, both of which are essential for maintaining neuronal integrity. However, it is unclear how inactivating PIK3C3 may affect neuronal endosomal versus autophagic processes in vivo. We generated a conditional null allele of the Pik3c3 gene in mouse, and specifically deleted it in postmitotic sensory neurons. Subsequent analyses reveal several interesting and surprising findings.Item Open Access Feature-specific clusters of neurons and decision-related neuronal activity.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014-06) Mayo, J Patrick; Verhoef, Bram-ErnstItem Open Access Frontal eye field neurons assess visual stability across saccades.(J Neurosci, 2012-02-22) Crapse, Trinity B; Sommer, Marc AThe image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.Item Open Access Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development.(PLoS One, 2008-05-07) Todi, Sokol V; Sivan-Loukianova, Elena; Jacobs, Julie S; Kiehart, Daniel P; Eberl, Daniel FBACKGROUND: Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.Item Open Access Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain.(Molecular pain, 2023-01) Dias, Fabiana C; Wang, Zilong; Scapellato, Garrett; Chen, YongIdentification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.Item Open Access Systematic mapping of the monkey inferior colliculus reveals enhanced low frequency sound representation.(Journal of neurophysiology, 2011-04) Bulkin, David A; Groh, Jennifer MWe investigated the functional architecture of the inferior colliculus (IC) in rhesus monkeys. We systematically mapped multiunit responses to tonal stimuli and noise in the IC and surrounding tissue of six rhesus macaques, collecting data at evenly placed locations and recording nonresponsive locations to define boundaries. The results show a modest tonotopically organized region (17 of 100 recording penetration locations in 4 of 6 monkeys) surrounded by a large mass of tissue that, although vigorously responsive, showed no clear topographic arrangement (68 of 100 penetration locations). Rather, most cells in these recordings responded best to frequencies at the low end of the macaque auditory range. The remaining 15 (of 100) locations exhibited auditory responses that were not sensitive to sound frequency. Potential anatomical correlates of functionally defined regions and implications for midbrain auditory prosthetic devices are discussed.Item Open Access Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion.(Pain, 2013-08) Chen, Yong; Williams, Susan H; McNulty, Amy L; Hong, Ji Hee; Lee, Suk Hee; Rothfusz, Nicole E; Parekh, Puja K; Moore, Carlene; Gereau, Robert W; Taylor, Andrea B; Wang, Fan; Guilak, Farshid; Liedtke, WolfgangTemporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, the therapy-refractoriness of its pain, and its largely elusive pathogenesis. Against this background, we sought to investigate the pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation-evoked pain behavior in mice and that trigeminal ganglion pronociceptive changes are TRPV4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4(-/-) mice with TMJ inflammation, attenuation of bite force was significantly less than in wildtype (WT) mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ inflammation and mandibular bony changes were apparent after injections of complete Freund adjuvant but were remarkably independent of the Trpv4 genotype. It was intriguing that, as a result of TMJ inflammation, WT mice exhibited significant upregulation of TRPV4 and phosphorylated extracellular-signal-regulated kinase (ERK) in TMJ-innervating trigeminal sensory neurons, which were absent in Trpv4(-/-) mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed resistance to reduction of bite force similar to that of Trpv4(-/-) mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ inflammation and probably functions upstream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in vivo. TRPV4 therefore represents a novel pronociceptive target in TMJ inflammation and should be considered a target of interest in human TMJD.