Browsing by Subject "Sepsis"
Results Per Page
Sort Options
Item Open Access A community approach to mortality prediction in sepsis via gene expression analysis.(Nature communications, 2018-02) Sweeney, Timothy E; Perumal, Thanneer M; Henao, Ricardo; Nichols, Marshall; Howrylak, Judith A; Choi, Augustine M; Bermejo-Martin, Jesús F; Almansa, Raquel; Tamayo, Eduardo; Davenport, Emma E; Burnham, Katie L; Hinds, Charles J; Knight, Julian C; Woods, Christopher W; Kingsmore, Stephen F; Ginsburg, Geoffrey S; Wong, Hector R; Parnell, Grant P; Tang, Benjamin; Moldawer, Lyle L; Moore, Frederick E; Omberg, Larsson; Khatri, Purvesh; Tsalik, Ephraim L; Mangravite, Lara M; Langley, Raymond JImproved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.Item Open Access Accelerated Sepsis Diagnosis by Seamless Integration of Nucleic Acid Purification and Detection(2014) Hsu, BangNingBackground The diagnosis of sepsis is challenging because the infection can be caused by more than 50 species of pathogens that might exist in the bloodstream in very low concentrations, e.g., less than 1 colony-forming unit/ml. As a result, among the current sepsis diagnostic methods there is an unsatisfactory trade-off between the assay time and the specificity of the derived diagnostic information. Although the present qPCR-based test is more specific than biomarker detection and faster than culturing, its 6 ~ 10 hr turnaround remains suboptimal relative to the 7.6%/hr rapid deterioration of the survival rate, and the 3 hr hands-on time is labor-intensive. To address these issues, this work aims to utilize the advances in microfluidic technologies to expedite and automate the ``nucleic acid purification - qPCR sequence detection'' workflow.
Methods and Results This task is evaluated to be best approached by combining immiscible phase filtration (IPF) and digital microfluidic droplet actuation (DM) on a fluidic device. In IPF, as nucleic acid-bound magnetic beads are transported from an aqueous phase to an immiscible phase, the carryover of aqueous contaminants is minimized by the high interfacial tension. Thus, unlike a conventional bead-based assay, the necessary degree of purification can be attained in a few wash steps. After IPF reduces the sample volume from a milliliter-sized lysate to a microliter-sized eluent, DM can be used to automatically prepare the PCR mixture. This begins with compartmenting the eluent in accordance with the desired number of multiplex qPCR reactions, and then transporting droplets of the PCR reagents to mix with the eluent droplets. Under the outlined approach, the IPF - DM integration should lead to a notably reduced turnaround and a hands-free ``lysate-to-answer'' operation.
As the first step towards such a diagnostic device, the primary objective of this thesis is to verify the feasibility of the IPF - DM integration. This is achieved in four phases. First, the suitable assays, fluidic device, and auxiliary systems are developed. Second, the extent of purification obtained per IPF wash, and hence the number of washes needed for uninhibited qPCR, are estimated via off-chip UV absorbance measurement and on-chip qPCR. Third, the performance of on-chip qPCR, particularly the copy number - threshold cycle correlation, is characterized. Lastly, the above developments accumulate to an experiment that includes the following on-chip steps: DNA purification by IPF, PCR mixture preparation via DM, and target quantification using qPCR - thereby demonstrating the core procedures in the proposed approach.
Conclusions It is proposed to expedite and automate qPCR-based multiplex sparse pathogen detection by combining IPF and DM on a fluidic device. As a start, this work demonstrated the feasibility of the IPF - DM integration. However, a more thermally robust device structure will be needed for later quantitative investigations, e.g., improving the bead - buffer mixing. Importantly, evidences indicate that future iterations of the IPF - DM fluidic device could reduce the sample-to-answer time by 75% to 1.5 hr and decrease the hands-on time by 90% to approximately 20 min.
Item Open Access Association of Pneumonia, Wound Infection, and Sepsis with Clinical Outcomes after Acute Traumatic Spinal Cord Injury.(Journal of neurotrauma, 2019-11) Jaja, Blessing NR; Jiang, Fan; Badhiwala, Jetan H; Schär, Ralph; Kurpad, Shekar; Grossman, Robert G; Harrop, James S; Guest, Jim D; Toups, Elizabeth G; Shaffrey, Chris I; Aarabi, Bizhan; Boakye, Max; Fehlings, Michael G; Wilson, Jefferson RPneumonia, wound infections, and sepsis (PWS) are the leading causes of acute mortality after traumatic spinal cord injury (SCI). However, the impact of PWS on neurological and functional outcomes is largely unknown. The present study analyzed participants from the prospective North American Clinical Trials Network (NACTN) registry and the Surgical Timing in Acute SCI Study (STASCIS) for the association between PWS and functional outcome (assessed as Spinal Cord Independence Measure subscores for respiration and indoor ambulation) at 6 months post-injury. Neurological outcome was analyzed as a secondary end-point. Among 1299 participants studied, 180 (14%) developed PWS during the acute admission. Compared with those without PWS, participants with PWS were mostly male (76% vs. 86%; p = 0.007), or presented with mostly American Spinal Injury Association Impairment Scale (AIS) grade A injury (36% vs. 61%; p < 0.001). There were no statistical differences between participants with or without PWS with respect to time from injury to surgery, and administration of steroids. Dominance analysis showed injury level, baseline AIS grade, and subject pre-morbid medical status collectively accounted for 77.7% of the predicted variance of PWS. Regression analysis indicated subjects with PWS demonstrated higher odds for respiratory (odds ratio [OR] 3.91, 95% confidence interval [CI]: 1.42-10.79) and ambulatory (OR 3.94, 95% CI: 1.50-10.38) support at 6 month follow-up in adjusted analysis. This study has shown an association between PWS occurring during acute admission and poorer functional outcomes following SCI.Item Open Access Autochthonous ST405 NDM-5 producing Escherichia coli causing fatal sepsis in Northern Italy.(International journal of antimicrobial agents, 2020-05) Peri, Anna Maria; Piazza, Aurora; De Zan, Valentina; Carugati, Manuela; Muscatello, Antonio; Comandatore, Francesco; De Lorenzis, Elisa; Pluderi, Mauro; Arghittu, Milena; Cariani, Lisa; Cantù, Anna Paola; Bandi, Claudio; Cugno, Massimo; Gori, Andrea; Bandera, AlessandraItem Open Access Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans.(PloS one, 2017-01) Yan, Qin; Ahn, Sun Hee; Medie, Felix Mba; Sharma-Kuinkel, Batu K; Park, Lawrence P; Scott, William K; Deshmukh, Hitesh; Tsalik, Ephraim L; Cyr, Derek D; Woods, Christopher W; Yu, Chen-Hsin Albert; Adams, Carlton; Qi, Robert; Hansen, Brenda; Fowler, Vance GWe previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780-88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus.Item Open Access Early propranolol treatment induces lung heme-oxygenase-1, attenuates metabolic dysfunction, and improves survival following experimental sepsis.(Crit Care, 2013-09-10) Wilson, Joel; Higgins, David; Hutting, Haley; Serkova, Natalie; Baird, Christine; Khailova, Ludmila; Queensland, Kelly; Vu Tran, Zung; Weitzel, Lindsay; Wischmeyer, Paul EINTRODUCTION: Pharmacological agents that block beta-adrenergic receptors have been associated with improved outcome in burn injury. It has been hypothesized that injuries leading to a hypermetabolic state, such as septic shock, may also benefit from beta-blockade; however, outcome data in experimental models have been contradictory. Thus, we investigated the effect of beta-blockade with propranolol on survival, hemodynamics, lung heat shock protein (HSP) expression, metabolism and inflammatory markers in a rat cecal ligation and puncture (CLP) model of sepsis. METHODS: Sprague-Dawley rats receiving either repeated doses (30 minutes pre-CLP and every 8 hours for 24 hours postoperatively) of propranolol or control (normal saline), underwent CLP and were monitored for survival. Additionally, lung and blood samples were collected at 6 and 24 hours for analysis. Animals also underwent monitoring to evaluate global hemodynamics. RESULTS: Seven days following CLP, propranolol improved survival versus control (P < 0.01). Heart rates in the propranolol-treated rats were approximately 23% lower than control rats (P < 0.05) over the first 24 hours, but the mean arterial blood pressure was not different between groups. Metabolic analysis of lung tissue demonstrated an increase in lung ATP/ADP ratio and NAD+ content and a decreased ratio of polyunsaturated fatty acids to monounsaturated fatty acids (PUFA/MUFA). Cytokine analysis of the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) demonstrated decreased expression of TNF-alpha in both lung and plasma at 24 hours post CLP induced sepsis. Finally, propranolol led to a significant increase in lung hemeoxygenase-1 expression, a key cellular protective heat shock protein (HSP) in the lung. Other lung HSP expression was unchanged. CONCLUSIONS: These results suggest that propranolol treatment may decrease mortality during sepsis potentially via a combination of improving metabolism, suppressing aspects of the inflammatory response and enhancing tissue protection.Item Open Access Fluid resuscitation practice patterns in intensive care units of the USA: a cross-sectional survey of critical care physicians.(Perioper Med (Lond), 2016) Miller, Timothy E; Bunke, Martin; Nisbet, Paul; Brudney, Charles SBACKGROUND: Fluid resuscitation is a cornerstone of intensive care treatment, yet there is a lack of agreement on how various types of fluids should be used in critically ill patients with different disease states. Therefore, our goal was to investigate the practice patterns of fluid utilization for resuscitation of adult patients in intensive care units (ICUs) within the USA. METHODS: We conducted a cross-sectional online survey of 502 physicians practicing in medical and surgical ICUs. Survey questions were designed to assess clinical decision-making processes for 3 types of patients who need volume expansion: (1) not bleeding and not septic, (2) bleeding but not septic, (3) requiring resuscitation for sepsis. First-choice fluid used in fluid boluses for these 3 patient types was requested from the respondents. Descriptive statistics were performed using a Kruskal-Wallis test to evaluate differences among the physician groups. Follow-up tests, including t tests, were conducted to evaluate differences between ICU types, hospital settings, and bolus volume. RESULTS: Fluid resuscitation varied with respect to preferences for the factors to determine volume status and preferences for fluid types. The 3 most frequently preferred volume indicators were blood pressure, urine output, and central venous pressure. Regardless of the patient type, the most preferred fluid type was crystalloid, followed by 5 % albumin and then 6 % hydroxyethyl starches (HES) 450/0.70 and 6 % HES 600/0.75. Surprisingly, up to 10 % of physicians still chose HES as the first choice of fluid for resuscitation in sepsis. The clinical specialty and the practice setting of the treating physicians also influenced fluid choices. CONCLUSIONS: Practice patterns of fluid resuscitation varied in the USA, depending on patient characteristics, clinical specialties, and practice settings of the treating physicians.Item Open Access Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans.(PLoS One, 2013) Ahn, Sun Hee; Tsalik, Ephraim L; Cyr, Derek D; Zhang, Yurong; van Velkinburgh, Jennifer C; Langley, Raymond J; Glickman, Seth W; Cairns, Charles B; Zaas, Aimee K; Rivers, Emanuel P; Otero, Ronny M; Veldman, Tim; Kingsmore, Stephen F; Kingsmore, Stephen F; Lucas, Joseph; Woods, Christopher W; Ginsburg, Geoffrey S; Fowler, Vance GStaphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host's inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues.Item Open Access Host gene expression profiling and in vivo cytokine studies to characterize the role of linezolid and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) murine sepsis model.(PLoS One, 2013) Sharma-Kuinkel, Batu K; Zhang, Yurong; Yan, Qin; Ahn, Sun Hee; Fowler, Vance GLinezolid (L), a potent antibiotic for Methicillin Resistant Staphylococcus aureus (MRSA), inhibits bacterial protein synthesis. By contrast, vancomycin (V) is a cell wall active agent. Here, we used a murine sepsis model to test the hypothesis that L treatment is associated with differences in bacterial and host characteristics as compared to V. Mice were injected with S. aureus USA300, and then intravenously treated with 25 mg/kg of either L or V at 2 hours post infection (hpi). In vivo alpha-hemolysin production was reduced in both L and V-treated mice compared to untreated mice but the reduction did not reach the statistical significance [P = 0.12 for L; P = 0.70 for V). PVL was significantly reduced in L-treated mice compared to untreated mice (P = 0.02). However the reduction of in vivo PVL did not reach the statistical significance in V- treated mice compared to untreated mice (P = 0.27). Both antibiotics significantly reduced IL-1β production [P = 0.001 for L; P = 0.006 for V]. IL-6 was significantly reduced with L but not V antibiotic treatment [P<0.001 for L; P = 0.11 for V]. Neither treatment significantly reduced production of TNF-α. Whole-blood gene expression profiling showed no significant effect of L and V on uninfected mice. In S. aureus-infected mice, L altered the expression of a greater number of genes than V (95 vs. 42; P = 0.001). Pathway analysis for the differentially expressed genes identified toll-like receptor signaling pathway to be common to each S. aureus-infected comparison. Expression of immunomodulatory genes like Cxcl9, Cxcl10, Il1r2, Cd14 and Nfkbia was different among the treatment groups. Glycerolipid metabolism pathway was uniquely associated with L treatment in S. aureus infection. This study demonstrates that, as compared to V, treatment with L is associated with reduced levels of toxin production, differences in host inflammatory response, and distinct host gene expression characteristics in MRSA sepsis.Item Open Access In Reply: Incidence and Predictive Factors of Sepsis Following Adult Spinal Deformity Surgery.(Neurosurgery, 2018-07) Zuckerman, Scott L; Lakomkin, Nikita; Hadjipanayis, Constantinos G; Shaffrey, Christopher I; Smith, Justin S; Cheng, Joseph SItem Open Access In-hospital outcomes of premature infants with severe bronchopulmonary dysplasia.(Journal of perinatology : official journal of the California Perinatal Association, 2017-07) Jackson, W; Hornik, CP; Messina, JA; Guglielmo, K; Watwe, A; Delancy, G; Valdez, A; MacArthur, T; Peter-Wohl, S; Smith, PB; Tolia, VN; Laughon, MMOBJECTIVE:To characterize in-hospital outcomes of premature infants diagnosed with severe bronchopulmonary dysplasia (BPD). STUDY DESIGN:Retrospective cohort study including premature infants with severe BPD discharged from 348 Pediatrix Medical Group neonatal intensive care units from 1997 to 2015. RESULTS:There were 10 752 infants with severe BPD, and 549/10 752 (5%) died before discharge. Infants who died were more likely to be male, small for gestational age, have received more medical interventions and more frequently diagnosed with surgical necrotizing enterocolitis, culture-proven sepsis and pulmonary hypertension following 36 weeks of postmenstrual age compared with survivors. Approximately 70% of infants with severe BPD were discharged by 44 weeks of postmenstrual age, and 86% were discharged by 48 weeks of postmenstrual age. CONCLUSIONS:A majority of infants diagnosed with severe BPD were discharged home by 44 weeks of postmenstrual age. These results may inform discussions with families regarding the expected hospital course of infants diagnosed with severe BPD.Item Open Access Metabolomic derangements are associated with mortality in critically ill adult patients.(PLoS One, 2014) Rogers, Angela J; McGeachie, Michael; Baron, Rebecca M; Gazourian, Lee; Haspel, Jeffrey A; Nakahira, Kiichi; Fredenburgh, Laura E; Hunninghake, Gary M; Raby, Benjamin A; Matthay, Michael A; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen; Kingsmore, Stephen; Langley, Ray J; Choi, Augustine MKOBJECTIVE: To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. RATIONALE: Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. METHODS: We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. RESULTS: We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). CONCLUSION: Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill patients.Item Open Access NOS2 Induction and HO-1-Mediated Transcriptional Control in Gram-Negative Peritonitis(2013) Withers, Crystal MicheleNitric oxide (NO) is an endogenous gaseous signaling molecule produced by three NO synthase isoforms (NOS1, 2, 3) and important in host defense. The induction of NOS2 during bacterial sepsis is critical for pathogen clearance but its sustained activation has long been associated with increased mortality secondary to multiple organ dysfunction syndrome (MODS). High levels of NO produced by NOS2 incite intrinsic cellular dysfunction, in part by damaging macromolecules through nitration and/or nitrosylation. These include mitochondrial DNA (mtDNA) and enzymes of key mitochondrial pathways required for maintenance of normal O2 utilization and energy homeostasis. However, animal studies and clinical trials inhibiting NOS2 have demonstrated pronounced organ dysfunction and increased mortality in response to live bacterial infections, confirming that NOS2 confers pro-survival benefits. Of particular interest here, the constitutive NOS1 and NOS3 have been linked to the up-regulation of nuclear genes involved in mitochondrial biogenesis but no comparable role has been described for NOS2. Therefore, I hypothesized that NOS2 is indispensible for host protection but must be tightly regulated to ensure NO levels are high enough to activate mitochondrial and other pro-survival genes, but below the threshold for cellular damage.
This hypothesis was explored with two major Aims. The first Aim was to define the role of NOS2 in the activation of mitochondrial biogenesis in the heart of E. coli-treated mice. The second was to investigate the ability of NOS2 to be transcriptionally regulated by an enzyme previously shown to induce mitochondrial biogenesis, heme oxygenase-1 (HO-1). This hypothesis was tested using an in vivo model of sublethal heat-killed E. coli (HkEC) peritonitis in C57B/L6 (Wt), NOS2-/-, and TLR4-/- mice. Additionally, in vitro systems of mouse AML-12 or Hepa 1-6 cells pretreated with HO-1 activators or Hmox1 shRNA prior to inflammatory challenge with lipopolysaccharide (LPS) +/- tumor necrosis factor-α (TNF-α). For the first Aim, Wt, NOS2-/-, and TLR4-/- mice were treated with (HkEC and cardiac tissue analyzed for mitochondrial function, expression of nuclear and mitochondrial proteins needed for mitochondrial biogenesis, and histological expression of NOS2 and TLR4 relative to changes in mitochondrial mass. For the second Aim, Wt mice were pretreated with hemin or carbon monoxide (CO) to activate HO-1 prior to HkEC-peritonitis. Liver tissue in these animals was evaluated at four hours for HO-1 induction, Nos2 mRNA expression, cytokine profiles, and nuclear factor (NF)-κB activation. Liver cell lines were pretreated with hemin, CO-releasing molecule (CORM), or bilirubin one hour before LPS exposure and the Nos2 transcriptional response evaluated at two and 24 hours. The MTT assay was used to confirm that in vitro treatments were not lethal.
These studies demonstrated that HkEC induced mtDNA damage in the heart that was repaired in Wt mice but not in NOS2-deficient mice. In KO mice, sustained mtDNA damage was associated with the reduced expression of nuclear (NRF-1, PGC-1α) and mitochondrial (Tfam, Pol-γ) proteins needed for mitochondrial biogenesis. The findings thus supported that NOS2 is required for mitochondrial biogenesis in the heart during Gram-negative challenge. Evaluation of the relationship between HO-1 and NOS2 in murine liver was more complex; HO-1 activation in HkEC-treated Wt mice attenuated 4-hour Nos2 gene transcription. In liver cell lines, hemin, CORM, and bilirubin were unable to suppress Nos2 expression at the time of maximal induction (2 hours). Nos2 was, however, suppressed by 24 hours, suggesting that the regulatory impact of HO-1 induction was not engaged early enough to reduce Nos2 transcription at 2 hours. It is concluded that NOS2 induction in bacterial sepsis optimizes the expression of the mitochondrial biogenesis transcriptional program, which subsequently can also be regulated by HO-1/CO in murine liver. This provides a potential new mechanism by which immune suppression and mitochondrial repair can occur in tandem during the acute inflammatory response.
Item Open Access Patients' Experiences With Staphylococcus aureus and Gram-negative Bacterial Bloodstream Infections: A Qualitative Descriptive Study and Concept Elicitation Phase To Inform Measurement of Patient-reported Quality of Life.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021-07) King, Heather A; Doernberg, Sarah B; Miller, Julie; Grover, Kiran; Oakes, Megan; Ruffin, Felicia; Gonzales, Sarah; Rader, Abigail; Neuss, Michael J; Bosworth, Hayden B; Sund, Zoë; Drennan, Caitlin; Hill-Rorie, Jonathan M; Shah, Pratik; Winn, Laura; Fowler, Vance G; Holland, Thomas LBackground
Although Staphylococcus aureus and gram-negative bacterial bloodstream infections (SAB/GNB) cause substantial morbidity, little is known regarding patient perceptions' of their impact on quality of life (QOL). Guidance for assessing QOL and disease-specific measures are lacking. We conducted a descriptive qualitative study to gain an in-depth understanding of patients' experiences with SAB/GNB and concept elicitation phase to inform a patient-reported QOL outcome measure.Methods
We conducted prospective one-time, in-depth, semi-structured, individual, qualitative telephone interviews 6- 8 weeks following bloodstream infection with either SAB or GNB. Patients were enrolled in an institutional registry (tertiary academic medical center) for SAB or GNB. Interviews were audio-recorded, transcribed, and coded. Directed content analysis identified a priori and emergent themes. Theme matrix techniques were used to facilitate analysis and presentation.Results
Interviews were completed with 30 patients with SAB and 31 patients with GNB. Most patients were at or near the end of intravenous antibiotic treatment when interviewed. We identified 3 primary high-level concepts: impact on QOL domains, time as a critical index, and sources of variability across patients. Across both types of bloodstream infection, the QOL domains most impacted were physical and functional, which was particularly evident among patients with SAB.Conclusions
SAB/GNB impact QOL among survivors. In particular, SAB had major impacts on multiple QOL domains. A combination of existing, generic measures that are purposefully selected and disease-specific items, if necessary, could best capture these impacts. Engaging patients as stakeholders and obtaining their feedback is crucial to conducting patient-centered clinical trials and providing patient-centered care.Item Open Access Portable Optical Microscopy of Murine Dorsal Window Chambers for Studying Anesthesia, Hypoxia, and Sepsis(2019) Stryker, Stefan MatthiasIn vivo imaging is an important scientific tool for studying bio-molecular interactions, but lack of preserved functionality during imaging restricts scientists’ abilities to gain critical knowledge. Structure can be preserved while using high-resolution optical imaging by utilizing window chambers in murine models1, yet the use of anesthesia for immobilization is problematic. Anesthesia affects tissue oxygenation2, blood cell velocities3, immunosuppression4, and allowable duration of imaging5–thus its usage restricts in vivo bio-molecular imaging accuracy and duration.
Developing a portable imaging system that attaches to murine dorsal window chambers enables imaging without anesthesia, avoiding previous drawbacks of window chamber models. A raspberry pi camera (RPI-CAM-V2, Raspberry Pi) was modified for microscopy and used alongside 3D printed panels for attaching the camera, optical filters, and LED light source to murine window chambers. Multiple applications for the portable system were developed, each requiring their own setup of filters and stimulating LEDs. The system is powered by a Raspberry Pi 3 Model B single-board computer (RASPBERRYPI3-MODB-1GB, Raspberry Pi), allowing for stream-lined data acquisition.
Imaging tissue oxygenation was the first application developed for the portable system. Oxygen sensing boron nanoparticles were injected into window chambers, while a UV LED was used to stimulate fluorescent and phosphorescent signals. When stimulated by UV light, the boron nanoparticles emit fluorescence and phosphorescence. Fluorescence is stable regardless of oxygenation, while phosphorescence signal from the nanoparticles is quenched in the presence of higher oxygenations. The ratio of fluorescence to phosphorescence was used to calculate oxygen concentration maps of window chamber tissue. Tissue oxygenations in awake and anesthetized mice inhaling varied oxygen concentrations were analyzed. In 5 awake nude mice inhaling 20% O2, the median partial pressure of oxygen was measured as 49 mmHg within their window chambers. From a one-tailed t-test with a false positive correction, 3 of the mice had significantly higher (p ≤ 0.05) tissue oxygenation while anesthetized compared to the awake measurements.
Developing the portable systems ability to image blood cells was another focus of this project. Blood cells were visible with white LED exposure. A frame rate of 30 frames/second was adequate for tracking cell motion while allowing for the highest resolution possible with the system. Blood cell velocities in a mouse awake and anesthetized were analyzed, while also observing change in blood cell velocities during sepsis that was induced by cecal ligation puncture (CLP). Three days after CLP, the mean awake blood cell velocity was measured as 0.21 ± 0.03 mm/s, while the mean anesthetized blood cell velocity was measured as 0.080 ± 0.002 mm/s. Six days after CLP, the awake measurement had reduced to 0.019 ± 0.005 mm/s, while the anesthetized measurement was reduced to 0.031 ± 0.002 mm/s (91% decrease in awake measurement, 61% decrease in anesthetized measurement). A two-way ANOVA on the factors of anesthesia and time post-CLP performed on multiple vessel regions calculated significance (p ≤ 0.05) for both of these factors on blood cell velocities within the pilot mouse’s window chamber.
Noting the differences between data collected on awake and anesthetized mice, our system has been validated as a tool for real-time imaging of tissue without the observed effects of anesthesia. By avoiding anesthesia, the developed device allows for continual data acquisition to increase from hours to days. The system is generalizable, and while only two applications are presented in this study, the system could be modified for imaging fluorescently labeled cells/proteins for other bio-molecular interactions.
Item Open Access Post-cesarean Section Peritonitis at a Referral Hospital in Rwanda: Factors Associated with Maternal Morbidity and Mortality(2016) Halfon, JohannaBackground: Post-cesarean section peritonitis is the leading cause of maternal morbidity and mortality at the main referral hospital in Rwanda. Published data on the management of post-cesarean section peritonitis is limited. This study examined predictors of maternal morbidity and mortality for post-cesarean peritonitis.
Methods: We performed a prospective observational cohort study at the University Teaching Hospital Kigali (CHUK) from January 1 until December 31 2015, followed by a retrospective chart review of all subjects with post-cesarean section peritonitis admitted to CHUK from January 1 until December 31, 2014. All patients admitted with the diagnosis of post-cesarean section peritonitis undergoing exploratory laparotomy at CHUK were enrolled. Patients were followed to either discharge or death. Study variables included baseline demographic/clinical characteristics, admission physical exam, intraoperative findings, and management. Data were analyzed using STATA version 14.
Results: Of the 167 patients enrolled, 81 survived without requiring hysterectomy (49%), 49 survived requiring hysterectomy (29%), and 36 died (22%). In the multivariate analysis, severe sepsis was the most significant predictor of mortality (RR=4.0 [2.2-7.7]) and uterine necrosis was the most significant predictor of hysterectomy (RR=6.3 [1.6-25.2]). There were high rates of antimicrobial resistance (AMR) among the bacterial isolates cultured from intra-abdominal pus, with 52% of bacteria resistant to third-generation cephalosporins.
Conclusions: Post-cesarean section peritonitis carries a high mortality rate in Rwanda. It is also associated with a high rate of hysterectomy. Understanding the disease process and identifying factors associated with outcomes can help guide management during admission.
Item Open Access Real-Time Sepsis Prediction using an End-to-End Multi Task Gaussian Process RNN Classifier(2017) Hariharan, SanjayWe present a scalable end-to-end classifier that uses streaming physiological and medication data to accurately predict the onset of sepsis, a life-threatening complication from infections that has high mortality and morbidity. Our proposed framework models the multivariate trajectories of continuous-valued physiological time series using multitask Gaussian processes, seamlessly accounting for the high uncertainty, frequent missingness, and irregular sampling rates typically associated with real clinical data. The Gaussian process is directly connected to a black-box classifier that predicts whether a patient encounter will become septic, chosen in our case to be a recurrent neural network to account for the extreme variability in the length of patient encounters. We show how several approximations scale the computations associated with the Gaussian process in a manner so that the entire system can be trained discriminatively end-to-end using backpropagation. In a large cohort of heterogeneous inpatient encounters at our university health system we find that it outperforms several baselines at predicting sepsis, and yields 33\% and 195\% improved areas under the Receiver Operating Characteristic and Precision Recall curves as compared to the NEWS score currently in use on our own hospital wards.
Item Open Access Results of the CHlorhexidine Gluconate Bathing implementation intervention to improve evidence-based nursing practices for prevention of central line associated bloodstream infections Study (CHanGing BathS): a stepped wedge cluster randomized trial.(Implementation science : IS, 2021-04-26) Reynolds, Staci S; Woltz, Patricia; Keating, Edward; Neff, Janice; Elliott, Jennifer; Hatch, Daniel; Yang, Qing; Granger, Bradi BBackground
Central line-associated bloodstream infections (CLABSIs) result in approximately 28,000 deaths and approximately $2.3 billion in added costs to the U.S. healthcare system each year, and yet, many of these infections are preventable. At two large health systems in the southeast United States, CLABSIs continue to be an area of opportunity. Despite strong evidence for interventions to prevent CLABSI and reduce associated patient harm, such as use of chlorhexidine gluconate (CHG) bathing, the adoption of these interventions in practice is poor. The primary objective of this study was to assess the effect of a tailored, multifaceted implementation program on nursing staff's compliance with the CHG bathing process and electronic health record (EHR) documentation in critically ill patients. The secondary objectives were to examine the (1) moderating effect of unit characteristics and cultural context, (2) intervention effect on nursing staff's knowledge and perceptions of CHG bathing, and (3) intervention effect on CLABSI rates.Methods
A stepped wedged cluster-randomized design was used with units clustered into 4 sequences; each sequence consecutively began the intervention over the course of 4 months. The Grol and Wensing Model of Implementation helped guide selection of the implementation strategies, which included educational outreach visits and audit and feedback. Compliance with the appropriate CHG bathing process and daily CHG bathing documentation were assessed. Outcomes were assessed 12 months after the intervention to assess for sustainability.Results
Among the 14 clinical units participating, 8 were in a university hospital setting and 6 were in community hospital settings. CHG bathing process compliance and nursing staff's knowledge and perceptions of CHG bathing significantly improved after the intervention (p = .009, p = .002, and p = .01, respectively). CHG bathing documentation compliance and CLABSI rates did not significantly improve; however, there was a clinically significant 27.4% decrease in CLABSI rates.Conclusions
Using educational outreach visits and audit and feedback implementation strategies can improve adoption of evidence-based CHG bathing practices.Trial registration
ClinicalTrials.gov, NCT03898115 , Registered 28 March 2019.Item Open Access Screening tools for predicting mortality of adults with suspected sepsis: an international sepsis cohort validation study.(BMJ open, 2023-02) Blair, Paul W; Mehta, Rittal; Oppong, Chris Kwaku; Tin, Som; Ko, Emily; Tsalik, Ephraim L; Chenoweth, Josh; Rozo, Michelle; Adams, Nehkonti; Beckett, Charmagne; Woods, Christopher W; Striegel, Deborah A; Salvador, Mark G; Brandsma, Joost; McKean, Lauren; Mahle, Rachael E; Hulsey, William R; Krishnan, Subramaniam; Prouty, Michael; Letizia, Andrew; Fox, Anne; Faix, Dennis; Lawler, James V; Duplessis, Chris; Gregory, Michael G; Vantha, Te; Owusu-Ofori, Alex Kwame; Ansong, Daniel; Oduro, George; Schully, Kevin L; Clark, Danielle VObjectives
We evaluated the performance of commonly used sepsis screening tools across prospective sepsis cohorts in the USA, Cambodia and Ghana.Design
Prospective cohort studies.Setting and participants
From 2014 to 2021, participants with two or more SIRS (Systemic Inflammatory Response Syndrome) criteria and suspected infection were enrolled in emergency departments and medical wards at hospitals in Cambodia and Ghana and hospitalised participants with suspected infection were enrolled in the USA. Cox proportional hazards regression was performed, and Harrell's C-statistic calculated to determine 28-day mortality prediction performance of the quick Sequential Organ Failure Assessment (qSOFA) score ≥2, SIRS score ≥3, National Early Warning Score (NEWS) ≥5, Modified Early Warning Score (MEWS) ≥5 or Universal Vital Assessment (UVA) score ≥2. Screening tools were compared with baseline risk (age and sex) with the Wald test.Results
The cohorts included 567 participants (42.9% women) including 187 participants from Kumasi, Ghana, 200 participants from Takeo, Cambodia and 180 participants from Durham, North Carolina in the USA. The pooled mortality was 16.4% at 28 days. The mortality prediction accuracy increased from baseline risk with the MEWS (C-statistic: 0.63, 95% CI 0.58 to 0.68; p=0.002), NEWS (C-statistic: 0.68; 95% CI 0.64 to 0.73; p<0.001), qSOFA (C-statistic: 0.70, 95% CI 0.64 to 0.75; p<0.001), UVA score (C-statistic: 0.73, 95% CI 0.69 to 0.78; p<0.001), but not with SIRS (0.60; 95% CI 0.54 to 0.65; p=0.13). Within individual cohorts, only the UVA score in Ghana performed better than baseline risk (C-statistic: 0.77; 95% CI 0.71 to 0.83; p<0.001).Conclusions
Among the cohorts, MEWS, NEWS, qSOFA and UVA scores performed better than baseline risk, largely driven by accuracy improvements in Ghana, while SIRS scores did not improve prognostication accuracy. Prognostication scores should be validated within the target population prior to clinical use.Item Open Access Sepsis in sub-Saharan Africa: a prospective observational study of clinical characteristics, management, and outcomes for adolescents and adults with sepsis in northern Tanzania(2020) Bonnewell, JohnBackground: Sepsis is a leading cause of death and disability globally. Despite a high burden of sepsis in sub-Saharan Africa, clinical data for sepsis in that setting are limited. We sought to describe the clinical characteristics, management, and outcomes in a cohort of adults and adolescents with sepsis in northern Tanzania. We also assessed for associations between clinical factors and in-hospital mortality.
Methods: We carried out a prospective observational cohort study at Kilimanjaro Christian Medical Centre in Moshi, Tanzania. We collected data on demographics, baseline clinical characteristics, and management, with an emphasis on hours 0-6 after arrival to the Emergency Department. Log risk regression was carried out to assess for associations between demographic and clinical factors and our primary outcome of in-hospital death. Separate multivariable regression analyses were conducted for both antimicrobial administration by hour 6 and administration of intravenous (IV) fluids >1L by hour 6 and the outcome of in-hospital mortality.
Results: Fifty-eight participants were included in our analysis. Seventeen (29.3%) participants died in-hospital. Baseline characteristics associated with inpatient mortality included inability to drink unassisted, respiratory rate >30 breaths per minute, hypoxia, and altered mentation. Less than half of participants received any antimicrobial by hour 6, and most participants received <1L of IV fluids. HIV antibody testing was performed for only one participant in the first 6 hours. On multivariable analysis, neither antimicrobial administration nor IV fluids >1L by hour 6 was associated with inpatient mortality.
Conclusion: Sepsis in northern Tanzania carries a high risk of in-hospital mortality. Further research is urgently needed to establish the highest-yield interventions suited to the unique characteristics of sepsis in sSA.