Browsing by Subject "Sequence Deletion"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access A functional variant at miRNA-122 binding site in IL-1a 3' UTR predicts risk of recurrence in patients with oropharyngeal cancer.(Oncotarget, 2016-06) Wang, Chengyuan; Sturgis, Erich M; Chen, Xingming; Wei, Qingyi; Li, GuojunIL-1a, an important regulator of immune and inflammation responses, has been implicated in cancer development and prognosis. An insertion (Ins)/deletion (Del) polymorphism (IL-1a rs3783553) in the 3' UTR of IL-1a may disrupt a binding site for miRNA-122 and may affect its transcription level. Thus, this polymorphism may cause interindividual variation in immune and inflammation responses and thus may lead to different susceptibility to treatment response and prognosis of such patients. We evaluated the association of IL-1a rs3783553 polymorphism with risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP) in a cohort of 1008 patients. Log-rank test and univariate and multivariable Cox models were used to evaluate associations. Compared with patients with Del/Del homozygous genotype, the patients with Ins/Del+Ins/Ins variant genotypes had worse disease-free survival (log-rank P < 0.0001) and increased risk of SCCOP recurrence (HR, 2.4, 95% CI, 1.7-3.3) after multivariable adjustment. Furthermore, among patients with HPV16-positive tumors, the patients with Ins/Del+Ins/Ins variant genotypes of the IL-1a polymorphism had worse disease-free survival (log-rank P < 0.0001) and much higher recurrence risk than those with Del/Del homozygous genotype of this polymorphism (HR, 16.3, 95% CI, 5.0-52.7). Our findings suggest that IL-1a rs3783553 polymorphism may modulate the risk of SCCOP recurrence in patients, particularly for patients with HPV16-positive tumors. However, larger studies are needed to validate these results.Item Open Access Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli.(2011) Bateman, Stacey LynnEscherichia coli is a typical constituent of the enteric tract in many animals, including humans. However, specialized extraintestinal pathogenic E. colistrains (ExPEC) may transition from benign occupation of the enteric and vaginal tracts to sterile sites such as the urinary tract, bloodstream, and central nervous system. ExPEC isolates of urinary tract origin express type 1 pili as a critical virulence determinant mediating adherence to and invasion into urinary tract tissues. Type 1 pili expression is under epigenetic regulation by a family of site-specific recombinases, including FimX, which is encoded from a genomic islet called PAI-X for Pathogenicity Islet of FimX. A goal of this study was to determine the prevalence of the type 1 pili epigenetic regulator genes (fimB, fimE, fimX, ipuA, ipuB) and associated PAI-X genes (hyxR, hyxA, hyxB) present among an extended, diverse collection of pathogenic and commensal E. coli isolates. Using a new multiplex PCR, fimX and the additional PAI-X genes were found to be highly associated with ExPEC (83.2%) and more prevalent in ExPEC of lower urinary tract origin (87.5%) than upper urinary tract origin (73.6%) or human commensal isolates (20.6%; p < 0.05, all comparisons). Fim-like recombinase genes ipuA and ipuB also had a significant association with ExPEC compared to commensal isolates, but had a low overall prevalence (23.8% vs. 11.1%; p < 0.05). PAI-X also showed a strong positive correlation with the presence of virulence genes in the genomes of pathogenic isolates. Combined, our molecular epidemiology studies indicate PAI-X is highly associated with ExPEC isolates, and its high prevalence suggests a potential role in the ExPEC lifestyle. Further investigation into the regulation of PAI-X factors showed that FimX is also an epigenetic regulator of a LuxR-like response regulator HyxR, encoded on PAI-X. In multiple clinical ExPEC isolates, FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the inversion sites of the type 1 pili promoter and independent of integration host factor IHF. Additional studies into the role of HyxR during ExPEC pathogenesis uncovered that HyxR is involved in regulation of the nitrosative stress response. In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNI), primarily through derepression of hmpA, encoding a nitric oxide detoxifying flavohemoglobin. However, in the macrophage, HyxR expression produced large effects on intracellular survival in the presence and absence of RNI, and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. ExPEC reside in the enteric tract as commensal reservoirs, but can transition to a pathogenic state by invading normally sterile niches, establishing infection, and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. This study demonstrates the functional versatility of the FimX recombinase and identifies novel epigenetic and transcriptional regulatory controls for ExPEC tolerance to RNI challenge and survival during intracellular macrophage infection. Further investigation of these pathways may shed light on the regulatory cues and programming that provoke the commensal to pathogen transition.Item Open Access Erythrocyte invasion profiles are associated with a common invasion ligand polymorphism in Senegalese isolates of Plasmodium falciparum.(Parasitology, 2009-01) Lantos, PM; Ahouidi, AD; Bei, AK; Jennings, CV; Sarr, O; Ndir, O; Wirth, DF; Mboup, S; Duraisingh, MTPlasmodium falciparum parasites use multiple ligand-receptor interactions to invade human erythrocytes. Variant expression levels of members of the PfRh and PfEBA ligand families are associated with the use of different erythrocyte receptors, defining invasion pathways. Here we analyse a major polymorphism, a large sequence deletion in the PfRh2b ligand, and erythrocyte invasion profiles in uncultured Senegalese isolates. Parasites vary considerably in their use of sialic acid-containing and protease-sensitive erythrocyte receptors for invasion. The erythrocyte selectivity index was not related to invasion pathway usage, while parasite multiplication rate was associated with enhanced use of a trypsin-resistant invasion pathway. PfRh2b protein was expressed in all parasite isolates, although the PfRh2b deletion was present in a subset (approximately 68%). Parasites with the PfRh2b deletion were found to preferentially utilize protease-resistant pathways for erythrocyte invasion. Sialic acid-independent invasion is reduced in parasites with the PfRh2b deletion, but only in isolates derived from blood group O patients. Our results suggest a significant role for PfRh2b sequence polymorphism in discriminating between alternative erythrocyte receptors for invasion and as a possible determinant of virulence.Item Open Access Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.(J Cell Sci, 2010-11-01) Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim YPhotoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.Item Open Access Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes.(PLoS Genet, 2009-06) Bucan, Maja; Abrahams, Brett S; Wang, Kai; Glessner, Joseph T; Herman, Edward I; Sonnenblick, Lisa I; Alvarez Retuerto, Ana I; Imielinski, Marcin; Hadley, Dexter; Bradfield, Jonathan P; Kim, Cecilia; Gidaya, Nicole B; Lindquist, Ingrid; Hutman, Ted; Sigman, Marian; Kustanovich, Vlad; Lajonchere, Clara M; Singleton, Andrew; Kim, Junhyong; Wassink, Thomas H; McMahon, William M; Owley, Thomas; Sweeney, John A; Coon, Hilary; Nurnberger, John I; Li, Mingyao; Cantor, Rita M; Minshew, Nancy J; Sutcliffe, James S; Cook, Edwin H; Dawson, Geraldine; Buxbaum, Joseph D; Grant, Struan FA; Schellenberg, Gerard D; Geschwind, Daniel H; Hakonarson, HakonThe genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11-q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p = 2.3x10(-5)). Less is known about MDGA2, likewise observed to be case-specific (p = 1.3x10(-4)). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-value = 3x10(-39)), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts.Item Open Access Hematopoietic cell transplantation with cord blood for cure of HIV infections.(Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2013-03) Petz, Lawrence D; Redei, Istvan; Bryson, Yvonne; Regan, Donna; Kurtzberg, Joanne; Shpall, Elizabeth; Gutman, Jonathan; Querol, Sergio; Clark, Pamela; Tonai, Richard; Santos, Sarah; Bravo, Aide; Spellman, Stephen; Gragert, Loren; Rossi, John; Li, Shirley; Li, Haitang; Senitzer, David; Zaia, John; Rosenthal, Joseph; Forman, Stephen; Chow, RobertHematopoietic cell transplantation (HCT) using CCR5-Δ32/Δ32 stem cells from an adult donor has resulted in the only known cure of human immunodeficiency virus (HIV) infection. However, it is not feasible to repeat this procedure except rarely because of the low incidence of the CCR5-Δ32 allele, the availability of only a small number of potential donors for most patients, and the need for a very close human leukocyte antigen (HLA) match between adult donors and recipients. In contrast, cord blood (CB) transplantations require significantly less stringent HLA matching. Therefore, our hypothesis is that cure of HIV infections by HCT can be accomplished much more readily using umbilical CB stem cells obtained from a modestly sized inventory of cryopreserved CCR5-Δ32/Δ32 CB units. To test this hypothesis, we developed a screening program for CB units and are developing an inventory of CCR5-Δ32/Δ32 cryopreserved units available for HCT. Three hundred such units are projected to provide for white pediatric patients a 73.6% probability of finding an adequately HLA matched unit with a cell dose of ≥2.5 × 10(7) total nucleated cells (TNCs)/kg and a 27.9% probability for white adults. With a cell dose of ≥1 × 10(7) TNCs/kg, the corresponding projected probabilities are 85.6% and 82.1%. The projected probabilities are lower for ethnic minorities. Impetus for using CB HCT was provided by a transplantation of an adult with acute myelogenous leukemia who was not HIV infected. The HCT was performed with a CCR5-Δ32/Δ32 CB unit, and posttransplantation in vitro studies indicated that the patient's peripheral blood mononuclear cells were resistant to HIV infection.Item Open Access Loss of PRDM1/BLIMP-1 function contributes to poor prognosis of activated B-cell-like diffuse large B-cell lymphoma.(Leukemia, 2017-03) Xia, Y; Xu-Monette, ZY; Tzankov, A; Li, X; Manyam, GC; Murty, V; Bhagat, G; Zhang, S; Pasqualucci, L; Visco, C; Dybkaer, K; Chiu, A; Orazi, A; Zu, Y; Richards, KL; Hsi, ED; Choi, WWL; van Krieken, JH; Huh, J; Ponzoni, M; Ferreri, AJM; Møller, MB; Parsons, BM; Winter, JN; Piris, MA; Westin, J; Fowler, N; Miranda, RN; Ok, CY; Li, Y; Li, J; Medeiros, LJ; Young, KHPRDM1/BLIMP-1, a master regulator of plasma-cell differentiation, is frequently inactivated in activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) patients. Little is known about its genetic aberrations and relevant clinical implications. A large series of patients with de novo DLBCL was effectively evaluated for PRDM1/BLIMP-1 deletion, mutation, and protein expression. BLIMP-1 expression was frequently associated with the ABC phenotype and plasmablastic morphologic subtype of DLBCL, yet 63% of the ABC-DLBCL patients were negative for BLIMP-1 protein expression. In these patients, loss of BLIMP-1 was associated with Myc overexpression and decreased expression of p53 pathway molecules. In addition, homozygous PRDM1 deletions and PRDM1 mutations within exons 1 and 2, which encode for domains crucial for transcriptional repression, were found to show a poor prognostic impact in patients with ABC-DLBCL but not in those with germinal center B-cell-like DLBCL (GCB-DLBCL). Gene expression profiling revealed that loss of PRDM1/BLIMP-1 expression correlated with a decreased plasma-cell differentiation signature and upregulation of genes involved in B-cell receptor signaling and tumor-cell proliferation. In conclusion, these results provide novel clinical and biological insight into the tumor-suppressive role of PRDM1/BLIMP-1 in ABC-DLBCL patients and suggest that loss of PRDM1/BLIMP-1 function contributes to the overall poor prognosis of ABC-DLBCL patients.Item Open Access Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case-control analysis.(BMC cancer, 2006-01) Zhai, Xiangjun; Gao, Jun; Hu, Zhibin; Tang, Jinhai; Qin, Jianwei; Wang, Shui; Wang, Xuechen; Jin, Guangfu; Liu, Jiyong; Chen, Wenshen; Chen, Feng; Wang, Xinru; Wei, Qingyi; Shen, HongbingBACKGROUND: Accumulative evidence suggests that low folate intake is associated with increased risk of breast cancer. Polymorphisms in genes involved in folate metabolism may influence DNA methylation, nucleotide synthesis, and thus individual susceptibility to cancer. Thymidylate synthase (TYMS) is a key enzyme that participates in folate metabolism and catalyzes the conversion of dUMP to dTMP in the process of DNA synthesis. Two potentially functional polymorphisms [a 28-bp tandem repeat in the TYMS 5'-untranslated enhanced region (TSER) and a 6-bp deletion/insertion in the TYMS 3'-untranslated region (TS 3'-UTR)] were suggested to be correlated with alteration of thymidylate synthase expression and associated with cancer risk. METHODS: To test the hypothesis that polymorphisms of the TYMS gene are associated with risk of breast cancer, we genotyped these two polymorphisms in a case-control study of 432 incident cases with invasive breast cancer and 473 cancer-free controls in a Chinese population. RESULTS: We found that the distribution of TS3'-UTR (1494del6) genotype frequencies were significantly different between the cases and controls (P = 0.026). Compared with the TS3'-UTR del6/del6 wild-type genotype, a significantly reduced risk was associated with the ins6/ins6 homozygous variant genotype (adjusted OR = 0.58, 95% CI = 0.35-0.97) but not the del6/ins6 genotype (OR = 1.09, 95% CI = 0.82-1.46). Furthermore, breast cancer risks associated with the TS3'-UTR del6/del6 genotype were more evident in older women, postmenopausal subjects, individuals with a younger age at first-live birth and individuals with an older age at menarche. However, there was no evidence for an association between the TSER polymorphism and breast cancer risks. CONCLUSION: These findings suggest that the TS3'-UTR del6 polymorphism may play a role in the etiology of breast cancer. Further larger population-based studies as well as functional evaluation of the variants are warranted to confirm our findings.