Browsing by Subject "Signal transduction"
- Results Per Page
- Sort Options
Item Open Access Physiological Functions of Biased Signaling at the Chemokine Receptor CXCR3(2019) Smith, JeffreyG protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and one of the most common drug targets. It is now well-established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, G protein receptor kinases, and beta-arrestins. Certain ligands can preferentially activate certain signaling cascades while inhibiting others, a phenomenon referred to as biased signaling. While biased signaling is observed in many ex-vivo assays, the physiological relevance of biased signaling is not well established. Using the chemokine receptor CXCR3, a receptor that regulates T cell function, and its endogenous chemokines CXCL9, CXCL10, and CXCL11, I established that endogenous biased signaling exists at CXCR3. After identifying small molecule biased CXCR3 agonists using cell-based assays, I utilized human samples and mouse models of T cell movement and inflammation to determine that differential activation of either the G protein or beta-arrestin signaling pathways downstream of CXCR3 produces distinct functional differences. I identified that beta-arrestin regulated-Akt signaling appears critical for full efficacy chemotaxis. I conclude that biased signaling at CXCR3 produces distinct physiological responses.
Item Open Access Role of the Abelson Tyrosine Kinases in Regulating Macrophage Functions in Immunity and Cancer(2013) Greuber, EmileighThe Abl family of protein tyrosine kinases regulates diverse cellular processes by coordinating cytoskeletal rearrangements. Recent data indicate that pharmacological inhibition of Abl kinases reduces inflammation in preclinical models and in the clinic. While a previous role for Abl kinases in lymphocytes had been described, it remained unclear if Abl kinases regulate innate immune function. To explore this possibility, we generated a myeloid-specific conditional Abl knockout mouse. Using a combination of molecular, genetic, and pharmacological approaches, we demonstrate a role for Abl kinases in regulating the efficiency of macrophage phagocytosis and inflammatory responses. Bone marrow-derived macrophages from mice lacking Abl and Arg kinases exhibit inefficient phagocytosis of sheep erythrocytes and zymosan particles. Treatment with the Abl kinase inhibitors imatinib and GNF-2 or overexpression of kinase-inactive forms of the Abl family kinases also impairs particle internalization in murine macrophages, indicating Abl kinase activity is required for efficient phagocytosis. Further, Abl kinases are present at the phagocytic cup and are activated by Fcgamma receptor engagement. The regulation of phagocytosis by Abl family kinases is mediated in part by the Syk kinase. Loss of Abl and Arg expression or treatment with Abl inhibitors reduced Syk phosphorylation in response to Fcgamma receptor ligation. The link between Abl family kinases and Syk may be direct as purified Arg kinase phosphorylates Syk in vitro. Further, overexpression of membrane-targeted Syk in cells treated with Abl kinase inhibitors partially rescues the impairment in phagocytosis.
Our studies also revealed a role for Abl kinases in macrophage and cancer cell invasion. Inhibition of Abl kinases suppressed cell invasion in vitro, whereas overexpression of Abl kinases enhanced extracellular matrix degradation. We found that partial loss of Abl kinase expression in myeloid cells reduced macrophage infiltration into tumors in a mouse model of breast cancer. Furthermore, pharmacological inhibition of Abl kinases reduced myeloid cell infiltration and slowed tumor growth in subcutaneous tumor models. We also found that Abl expression and activity are elevated in subsets of human tumor samples. Taken together, our results suggest Abl kinases have an important role in cancer and inflammation, and represent important therapeutic targets for their treatment.
Item Open Access The effects of osmotic stress on the structure and function of the cell nucleus.(2010) Finan, John DesmondChondrocytes maintain cartilage by transducing joint load into appropriate biosynthetic activity, a process commonly known as mechanotransduction. Malfunctioning mechanotransduction leads to cartilage degradation and osteoarthritis. The mechanism of mechanotransduction is only partially understood but osmotic stresses are thought to play an important role. This study shows that the chondrocyte nucleus shrinks and wrinkles under hyper-osmotic stress. It shrinks because the chromatin inside the nucleus contracts as the macromolecules in the cell become more crowded. It wrinkles because the nuclear lamina buckles as the nucleus contracts. These morphological changes accelerate transport across the nuclear envelope. Many cells have organized actin caps around their nuclei that constrain the nucleus from contracting under hyper-osmotic stress. Agents exist that can reverse this loss of osmotic sensitivity in vitro without damaging the cell.