Browsing by Subject "Single-Cell Analysis"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access A noisy linear map underlies oscillations in cell size and gene expression in bacteria.(Nature, 2015-07-16) Tanouchi, Yu; Pai, Anand; Park, Heungwon; Huang, Shuqiang; Stamatov, Rumen; Buchler, Nicolas E; You, LingchongDuring bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.Item Open Access A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.(The Review of scientific instruments, 2011-09) Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James RMicrofluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.Item Open Access COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.(Nature, 2021-07) Delorey, Toni M; Ziegler, Carly GK; Heimberg, Graham; Normand, Rachelly; Yang, Yiming; Segerstolpe, Åsa; Abbondanza, Domenic; Fleming, Stephen J; Subramanian, Ayshwarya; Montoro, Daniel T; Jagadeesh, Karthik A; Dey, Kushal K; Sen, Pritha; Slyper, Michal; Pita-Juárez, Yered H; Phillips, Devan; Biermann, Jana; Bloom-Ackermann, Zohar; Barkas, Nikolaos; Ganna, Andrea; Gomez, James; Melms, Johannes C; Katsyv, Igor; Normandin, Erica; Naderi, Pourya; Popov, Yury V; Raju, Siddharth S; Niezen, Sebastian; Tsai, Linus T-Y; Siddle, Katherine J; Sud, Malika; Tran, Victoria M; Vellarikkal, Shamsudheen K; Wang, Yiping; Amir-Zilberstein, Liat; Atri, Deepak S; Beechem, Joseph; Brook, Olga R; Chen, Jonathan; Divakar, Prajan; Dorceus, Phylicia; Engreitz, Jesse M; Essene, Adam; Fitzgerald, Donna M; Fropf, Robin; Gazal, Steven; Gould, Joshua; Grzyb, John; Harvey, Tyler; Hecht, Jonathan; Hether, Tyler; Jané-Valbuena, Judit; Leney-Greene, Michael; Ma, Hui; McCabe, Cristin; McLoughlin, Daniel E; Miller, Eric M; Muus, Christoph; Niemi, Mari; Padera, Robert; Pan, Liuliu; Pant, Deepti; Pe'er, Carmel; Pfiffner-Borges, Jenna; Pinto, Christopher J; Plaisted, Jacob; Reeves, Jason; Ross, Marty; Rudy, Melissa; Rueckert, Erroll H; Siciliano, Michelle; Sturm, Alexander; Todres, Ellen; Waghray, Avinash; Warren, Sarah; Zhang, Shuting; Zollinger, Daniel R; Cosimi, Lisa; Gupta, Rajat M; Hacohen, Nir; Hibshoosh, Hanina; Hide, Winston; Price, Alkes L; Rajagopal, Jayaraj; Tata, Purushothama Rao; Riedel, Stefan; Szabo, Gyongyi; Tickle, Timothy L; Ellinor, Patrick T; Hung, Deborah; Sabeti, Pardis C; Novak, Richard; Rogers, Robert; Ingber, Donald E; Jiang, Z Gordon; Juric, Dejan; Babadi, Mehrtash; Farhi, Samouil L; Izar, Benjamin; Stone, James R; Vlachos, Ioannis S; Solomon, Isaac H; Ashenberg, Orr; Porter, Caroline BM; Li, Bo; Shalek, Alex K; Villani, Alexandra-Chloé; Rozenblatt-Rosen, Orit; Regev, AvivCOVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.Item Open Access Detection of single mRNAs in individual cells of the auditory system.(Hearing research, 2018-09) Salehi, Pezhman; Nelson, Charlie N; Chen, Yingying; Lei, Debin; Crish, Samuel D; Nelson, Jovitha; Zuo, Hongyan; Bao, JianxinGene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.Item Open Access FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows.(Frontiers in immunology, 2021-01) White, Scott; Quinn, John; Enzor, Jennifer; Staats, Janet; Mosier, Sarah M; Almarode, James; Denny, Thomas N; Weinhold, Kent J; Ferrari, Guido; Chan, CliburnAn important challenge for primary or secondary analysis of cytometry data is how to facilitate productive collaboration between domain and quantitative experts. Domain experts in cytometry laboratories and core facilities increasingly recognize the need for automated workflows in the face of increasing data complexity, but by and large, still conduct all analysis using traditional applications, predominantly FlowJo. To a large extent, this cuts domain experts off from the rapidly growing library of Single Cell Data Science algorithms available, curtailing the potential contributions of these experts to the validation and interpretation of results. To address this challenge, we developed FlowKit, a Gating-ML 2.0-compliant Python package that can read and write FCS files and FlowJo workspaces. We present examples of the use of FlowKit for constructing reporting and analysis workflows, including round-tripping results to and from FlowJo for joint analysis by both domain and quantitative experts.Item Open Access Human distal lung maps and lineage hierarchies reveal a bipotent progenitor.(Nature, 2022-04) Kadur Lakshminarasimha Murthy, Preetish; Sontake, Vishwaraj; Tata, Aleksandra; Kobayashi, Yoshihiko; Macadlo, Lauren; Okuda, Kenichi; Conchola, Ansley S; Nakano, Satoko; Gregory, Simon; Miller, Lisa A; Spence, Jason R; Engelhardt, John F; Boucher, Richard C; Rock, Jason R; Randell, Scott H; Tata, Purushothama RaoMapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.Item Open Access Magnetophoretic circuits for digital control of single particles and cells.(Nat Commun, 2014-05-14) Lim, B; Reddy, V; Hu, X; Kim, K; Jadhav, M; Abedini-Nassab, R; Noh, Y; Lim, YT; Yellen, BB; Kim, CThe ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.Item Open Access Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy.(Mol Biol Cell, 2014-11-05) Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas ETime-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.Item Open Access Protocol for fast scRNA-seq raw data processing using scKB and non-arbitrary quality control with COPILOT.(STAR protocols, 2022-12) Hsu, Che-Wei; Shahan, Rachel; Nolan, Trevor M; Benfey, Philip N; Ohler, UweWe describe a protocol to perform fast and non-arbitrary quality control of single-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB is a wrapper script of kallisto and bustools for accelerated alignment and transcript count matrix generation, which runs significantly faster than the popular tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal by comparing distributions of low-quality and high-quality cells. Together, this protocol streamlines the processing workflow and provides an easy entry for new scRNA-seq users. For complete details on the use and execution of this protocol, please refer to Shahan et al. (2022).Item Open Access Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection.(JCI insight, 2020-10) Dangi, Anil; Natesh, Naveen R; Husain, Irma; Ji, Zhicheng; Barisoni, Laura; Kwun, Jean; Shen, Xiling; Thorp, Edward B; Luo, XunrongMyeloid cells are increasingly recognized as major players in transplant rejection. Here, we used a murine kidney transplantation model and single cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques, including machine learning, we demonstrate that kidney allograft-infiltrating myeloid cells followed a trajectory of differentiation from monocytes to proinflammatory macrophages, and they exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family Tyro3/Axl/Mertk (TAM). Using kidney transplant recipients with Axl gene deficiency, we further demonstrate that Axl augmented intragraft differentiation of proinflammatory macrophages, likely via its effect on the transcription factor Cebpb. This, in turn, promoted intragraft recruitment, differentiation, and proliferation of donor-specific T cells, and it enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and it presents a potentially novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival.Item Open Access Single neurons may encode simultaneous stimuli by switching between activity patterns.(Nature communications, 2018-07-13) Caruso, Valeria C; Mohl, Jeff T; Glynn, Christopher; Lee, Jungah; Willett, Shawn M; Zaman, Azeem; Ebihara, Akinori F; Estrada, Rolando; Freiwald, Winrich A; Tokdar, Surya T; Groh, Jennifer MHow the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.Item Open Access Single-Cell Analysis Reveals Distinct Gene Expression and Heterogeneity in Male and Female Plasmodium falciparum Gametocytes.(mSphere, 2018-04-11) Walzer, Katelyn A; Kubicki, Danielle M; Tang, Xiaohu; Chi, Jen-Tsan AshleySexual reproduction is an obligate step in the Plasmodium falciparum life cycle, with mature gametocytes being the only form of the parasite capable of human-to-mosquito transmission. Development of male and female gametocytes takes 9 to 12 days, and although more than 300 genes are thought to be specific to gametocytes, only a few have been postulated to be male or female specific. Because these genes are often expressed during late gametocyte stages and for some, male- or female-specific transcript expression is debated, the separation of male and female populations is technically challenging. To overcome these challenges, we have developed an unbiased single-cell approach to determine which transcripts are expressed in male versus female gametocytes. Using microfluidic technology, we isolated single mid- to late-stage gametocytes to compare the expression of 91 genes, including 87 gametocyte-specific genes, in 90 cells. Such analysis identified distinct gene clusters whose expression was associated with male, female, or all gametocytes. In addition, a small number of male gametocytes clustered separately from female gametocytes based on sex-specific expression independent of stage. Many female-enriched genes also exhibited stage-specific expression. RNA fluorescent in situ hybridization of male and female markers validated the mutually exclusive expression pattern of male and female transcripts in gametocytes. These analyses uncovered novel male and female markers that are expressed as early as stage III gametocytogenesis, providing further insight into Plasmodium sex-specific differentiation previously masked in population analyses. Our single-cell approach reveals the most robust markers for sex-specific differentiation in Plasmodium gametocytes. Such single-cell expression assays can be generalized to all eukaryotic pathogens.IMPORTANCE Most human deaths that result from malaria are caused by the eukaryotic parasite Plasmodium falciparum The only form of this parasite that is transmitted to the mosquito is the sexual form, called the gametocyte. The production of mature gametocytes can take up to 2 weeks and results in phenotypically distinct males and females, although what causes this gender-specific differentiation remains largely unknown. Here, we demonstrate the first use of microfluidic technology to capture single gametocytes and determine their temporal sex-specific gene expression in an unbiased manner. We were able to determine male or female identity of single cells based on the upregulation of gender-specific genes as early as mid-stage gametocytes. This analysis has revealed strong markers for male and female gametocyte differentiation that were previously concealed in population analyses. Similar single-cell analyses in eukaryotic pathogens using this method may uncover rare cell types and heterogeneity previously masked in population studies.Item Open Access Single-cell functional analysis of parathyroid adenomas reveals distinct classes of calcium sensing behaviour in primary hyperparathyroidism.(J Cell Mol Med, 2016-02) Koh, James; Hogue, Joyce A; Wang, Yuli; DiSalvo, Matthew; Allbritton, Nancy L; Shi, Yuhong; Olson, John A; Sosa, Julie APrimary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder caused by a failure of calcium sensing secondary to tumour development in one or more of the parathyroid glands. Parathyroid adenomas are comprised of distinct cellular subpopulations of variable clonal status that exhibit differing degrees of calcium responsiveness. To gain a clearer understanding of the relationship among cellular identity, tumour composition and clinical biochemistry in PHPT, we developed a novel single cell platform for quantitative evaluation of calcium sensing behaviour in freshly resected human parathyroid tumour cells. Live-cell intracellular calcium flux was visualized through Fluo-4-AM epifluorescence, followed by in situ immunofluorescence detection of the calcium sensing receptor (CASR), a central component in the extracellular calcium signalling pathway. The reactivity of individual parathyroid tumour cells to extracellular calcium stimulus was highly variable, with discrete kinetic response patterns observed both between and among parathyroid tumour samples. CASR abundance was not an obligate determinant of calcium responsiveness. Calcium EC50 values from a series of parathyroid adenomas revealed that the tumours segregated into two distinct categories. One group manifested a mean EC50 of 2.40 mM (95% CI: 2.37-2.41), closely aligned to the established normal range. The second group was less responsive to calcium stimulus, with a mean EC50 of 3.61 mM (95% CI: 3.45-3.95). This binary distribution indicates the existence of a previously unappreciated biochemical sub-classification of PHPT tumours, possibly reflecting distinct etiological mechanisms. Recognition of quantitative differences in calcium sensing could have important implications for the clinical management of PHPT.Item Open Access Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics.(Nature medicine, 2021-03) Muus, Christoph; Luecken, Malte D; Eraslan, Gökcen; Sikkema, Lisa; Waghray, Avinash; Heimberg, Graham; Kobayashi, Yoshihiko; Vaishnav, Eeshit Dhaval; Subramanian, Ayshwarya; Smillie, Christopher; Jagadeesh, Karthik A; Duong, Elizabeth Thu; Fiskin, Evgenij; Torlai Triglia, Elena; Ansari, Meshal; Cai, Peiwen; Lin, Brian; Buchanan, Justin; Chen, Sijia; Shu, Jian; Haber, Adam L; Chung, Hattie; Montoro, Daniel T; Adams, Taylor; Aliee, Hananeh; Allon, Samuel J; Andrusivova, Zaneta; Angelidis, Ilias; Ashenberg, Orr; Bassler, Kevin; Bécavin, Christophe; Benhar, Inbal; Bergenstråhle, Joseph; Bergenstråhle, Ludvig; Bolt, Liam; Braun, Emelie; Bui, Linh T; Callori, Steven; Chaffin, Mark; Chichelnitskiy, Evgeny; Chiou, Joshua; Conlon, Thomas M; Cuoco, Michael S; Cuomo, Anna SE; Deprez, Marie; Duclos, Grant; Fine, Denise; Fischer, David S; Ghazanfar, Shila; Gillich, Astrid; Giotti, Bruno; Gould, Joshua; Guo, Minzhe; Gutierrez, Austin J; Habermann, Arun C; Harvey, Tyler; He, Peng; Hou, Xiaomeng; Hu, Lijuan; Hu, Yan; Jaiswal, Alok; Ji, Lu; Jiang, Peiyong; Kapellos, Theodoros S; Kuo, Christin S; Larsson, Ludvig; Leney-Greene, Michael A; Lim, Kyungtae; Litviňuková, Monika; Ludwig, Leif S; Lukassen, Soeren; Luo, Wendy; Maatz, Henrike; Madissoon, Elo; Mamanova, Lira; Manakongtreecheep, Kasidet; Leroy, Sylvie; Mayr, Christoph H; Mbano, Ian M; McAdams, Alexi M; Nabhan, Ahmad N; Nyquist, Sarah K; Penland, Lolita; Poirion, Olivier B; Poli, Sergio; Qi, CanCan; Queen, Rachel; Reichart, Daniel; Rosas, Ivan; Schupp, Jonas C; Shea, Conor V; Shi, Xingyi; Sinha, Rahul; Sit, Rene V; Slowikowski, Kamil; Slyper, Michal; Smith, Neal P; Sountoulidis, Alex; Strunz, Maximilian; Sullivan, Travis B; Sun, Dawei; Talavera-López, Carlos; Tan, Peng; Tantivit, Jessica; Travaglini, Kyle J; Tucker, Nathan R; Vernon, Katherine A; Wadsworth, Marc H; Waldman, Julia; Wang, Xiuting; Xu, Ke; Yan, Wenjun; Zhao, William; Ziegler, Carly GK; NHLBI LungMap Consortium; Human Cell Atlas Lung Biological NetworkAngiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.Item Open Access Single-cell transcriptomic analysis of the immune cell landscape in the aged mouse brain after ischemic stroke.(Journal of neuroinflammation, 2022-04-07) Li, Xuan; Lyu, Jingjun; Li, Ran; Jain, Vaibhav; Shen, Yuntian; Del Águila, Ángela; Hoffmann, Ulrike; Sheng, Huaxin; Yang, WeiBackground
Ischemic stroke is a medical emergency that primarily affects the elderly. A complex immune response in the post-stroke brain constitutes a key component of stroke pathophysiology. This study aimed to determine how stroke affects immune cell populations in the aged brain based on molecular profiles of individual cells.Methods
Single-cell RNA sequencing and a new transient ischemic stroke mouse model with late reperfusion were used.Results
We generated, for the first time, a composite picture of immune cell populations in the stroke aged brain at single-cell resolution. We discovered at least 6 microglial subsets in the stroke aged brain, including a potentially stroke-specific subtype. Moreover, we identified major cell subpopulations formed by infiltrated myeloid cells after stroke, and revealed their unique molecular profiles.Conclusions
This study provided the first scRNA-seq data set for immune cells in the stroke aged brain, and offered novel insights into post-stroke immune cell heterogeneity.