Browsing by Subject "Sonic hedgehog"
Results Per Page
Sort Options
Item Open Access Molecular Regulators of Stem Cell Fate and Tumor Development in the Cerebellum(2014) Brun, Sonja NicoleMedulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Identifying new treatments will require an understanding of early stages of tumor development - the cell types from which the tumors arise and the signals that regulate their growth - as well as identification of pathways that are critical for the growth and maintenance of established tumors.
In these studies, we first explore the role of WNT signaling in cerebellar progenitors and their potential to serve as cells of origin for WNT-driven tumors. The WNT pathway plays multiple roles in neural development, is crucial for establishment of the embryonic cerebellum, and is highly expressed in a subset of MBs. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. We show that expression of activated β-catenin promotes proliferation of cerebellar neural stem cells (NSCs) but not granule neuron precursors (GNPs). Although β-catenin expressing NSCs proliferate in vivo they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation and that cooperating "second hits" may be required for neoplastic transformation.
In addition to understanding early stages of transformation, identifying vulnerabilities of established tumors will be critical for development of targeted therapies. Our studies in Chapter 3 are focused on the role of Survivin in SHH-driven MB and utility of survivin inhibition as a therapeutic approach for MB. Survivin is an inhibitor of apoptosis protein (IAP) that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB, and when expressed at high levels predicts poor clinical outcome. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Using genetic and pharmacological approaches, we demonstrate that inhibition of Survivin impairs proliferation and survival of both murine and human MB cells. Although Survivin antagonists do not cross the blood-brain barrier, they are capable of impeding growth of MB cells in flank allografts. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.
Item Open Access The Role of FGF Signaling During Granule Neuron Precursor Development and Tumorigenesis(2010) Emmenegger, Brian AndrewDevelopment requires a delicate balance of proliferation and differentiation. Too little proliferation can result in dysfunctional tissues, while prolonged or heightened proliferation can result in tumor formation. This is clearly seen with the granule neuron precursors (GNPs) of the cerebellum. Too little proliferation of these cells during development results in ataxia, whereas too much proliferation results in the cerebellar tumor medulloblastoma. While these cells are known to proliferate in response to Shh, it is not clear what controls the differentiation of these cells in vivo.
Previous work from our lab has identified basic fibroblast growth factor (bFGF) as a candidate differentiation factor for these cells. In this thesis, I characterize some of the cellular and molecular mechanisms involved in FGF-mediated inhibition (FMI) of Shh-induced GNP proliferation. In addition, I employ FGFR knockouts and a bFGF gain-of-function mouse to determine whether FGF signaling is necessary and/or sufficient for differentiation of GNPs during cerebellar development. Finally, the question of whether bFGF can be effective as a therapeutic agent for in vivo tumor treatment is tested in a transplant model.
These experiments indicate that FGF signaling is neither necessary nor sufficient for GNP differentiation during cerebellar development. However, transplanted tumors are potently inhibited by bFGF treatment. Furthermore, FMI is shown to occur around the level of Gli2 processing in the Shh pathway, implying that such a treatment has promise to be widely effective in treatment of Shh-dependent medulloblastomas.
Item Open Access The Role of Sonic Hedgehog in Outflow Tract Development(2009) Dyer, Laura AnnThe two major contributing populations to the outflow tract of the heart are the secondary heart field and the cardiac neural crest. These two populations are responsible for providing the myocardium that supports the outflow tract valves, the smooth muscle that surrounds these valves and the outflow vessels themselves, and the septum that divides the primitive, single outflow tract into an aorta and pulmonary trunk. Because the morphogenesis of this region is so complex, its development is regulated by many different signaling pathways. One of these pathways is the Sonic hedgehog pathway. This thesis tests the hypothesis that Sonic hedgehog induces secondary heart field proliferation, which is necessary for normal outflow tract development. To address this hypothesis, I took advantage of small chemical antagonists and agonists to determine how too little or too much hedgehog signaling would affect the secondary heart field, both in in vitro explants and in vivo. I have determined that Sonic hedgehog signaling maintains proliferation in a subset of secondary heart field cells. This proliferation is essential for generating enough myocardium and smooth muscle and also for the cardiac neural crest to septate the outflow tract into two equal-sized vessels. Up-regulating hedgehog signaling induces proliferation, which is quickly down-regulated, showing that the embryo exhibits a great deal of plasticity. Together, these studies have shown that Sonic hedgehog promotes proliferation in a subset of the secondary heart field and that the level of proliferation must be tightly regulated in order to form a normal outflow tract.
Item Open Access Zebrafish Cardiac Development Requires a Conserved Secondary Heart Field(2011) Hami, DanyalDespite its lack of septation, the tissue patterning of the arterial pole of the zebrafish is remarkably similar to the patterning of pulmonary and aortic arterial poles observed in mouse and chick. The secondary heart field (SHF) is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the cardiac arterial pole. This field is part of the overall heart field, and its myocardial component has been fate mapped from the mesoderm to the heart in both mammals and birds. In this study I demonstrate that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field. This zebrafish SHF contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. I show that this field expresses Isl1, a transcription factor associated with the SHF in other species. I further show that differentiation, induced by Bmp signaling, occurs in this progenitor population as cells are added to the heart tube. Some molecular pathways required for SHF development in birds and mammals are conserved in teleosts, as Nkx2.5 and Nkx2.7 as well as Fgf8 regulate Bmp signaling in the zebrafish heart fields. Additionally, the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole.