Browsing by Subject "Sparrows"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Behavioural response to song and genetic divergence in two subspecies of white-crowned sparrows (Zonotrichia leucophrys).(Molecular ecology, 2017-06) Lipshutz, Sara E; Overcast, Isaac A; Hickerson, Michael J; Brumfield, Robb T; Derryberry, Elizabeth PDivergence in sexual signals may drive reproductive isolation between lineages, but behavioural barriers can weaken in contact zones. Here, we investigate the role of song as a behavioural and genetic barrier in a contact zone between two subspecies of white-crowned sparrows (Zonotrichia leucophrys). We employed a reduced genomic data set to assess population structure and infer the history underlying divergence, gene flow and hybridization. We also measured divergence in song and tested behavioural responses to song using playback experiments within and outside the contact zone. We found that the subspecies form distinct genetic clusters, and demographic inference supported a model of secondary contact. Song phenotype, particularly length of the first note (a whistle), was a significant predictor of genetic subspecies identity and genetic distance along the hybrid zone, suggesting a close link between song and genetic divergence in this system. Individuals from both parental and admixed localities responded significantly more strongly to their own song than to the other subspecies song, supporting song as a behavioural barrier. Putative parental and admixed individuals were not significantly different in their strength of discrimination between own and other songs; however, individuals from admixed localities tended to discriminate less strongly, and this difference in discrimination strength was explained by song dissimilarity as well as genetic distance. Therefore, we find that song acts as a reproductive isolating mechanism that is potentially weakening in a contact zone between the subspecies. Our findings also support the hypothesis that intraspecific song variation can reduce gene flow between populations.Item Open Access Long-distance dependencies in birdsong syntax.(Proceedings. Biological sciences, 2022-01) Searcy, William A; Soha, Jill; Peters, Susan; Nowicki, StephenSongbird syntax is generally thought to be simple, in particular lacking long-distance dependencies in which one element affects choice of another occurring considerably later in the sequence. Here, we test for long-distance dependencies in the sequences of songs produced by song sparrows (Melospiza melodia). Song sparrows sing with eventual variety, repeating each song type in a consecutive series termed a 'bout'. We show that in switching between song types, song sparrows follow a 'cycling rule', cycling through their repertoires in close to the minimum possible number of bouts. Song sparrows do not cycle in a set order but rather vary the order of song types from cycle to cycle. Cycling in a variable order strongly implies long-distance dependencies, in which choice of the next type depends on the song types sung over the past cycle, in the range of 9-10 bouts. Song sparrows also follow a 'bout length rule', whereby the number of repetitions of a song type in a bout is positively associated with the length of the interval until that type recurs. This rule requires even longer distance dependencies that cross one another; such dependencies are characteristic of more complex levels of syntax than previously attributed to non-human animals.Item Open Access Neural correlates of categorical perception in learned vocal communication.(Nat Neurosci, 2009-02) Prather, JF; Nowicki, S; Anderson, RC; Peters, S; Mooney, RAThe division of continuously variable acoustic signals into discrete perceptual categories is a fundamental feature of vocal communication, including human speech. Despite the importance of categorical perception to learned vocal communication, the neural correlates underlying this phenomenon await identification. We found that individual sensorimotor neurons in freely behaving swamp sparrows expressed categorical auditory responses to changes in note duration, a learned feature of their songs, and that the neural response boundary accurately predicted the categorical perceptual boundary measured in field studies of the same sparrow population. Furthermore, swamp sparrow populations that learned different song dialects showed different categorical perceptual boundaries that were consistent with the boundary being learned. Our results extend the analysis of the neural basis of perceptual categorization into the realm of vocal communication and advance the learned vocalizations of songbirds as a model for investigating how experience shapes categorical perception and the activity of categorically responsive neurons.Item Open Access Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.(PloS one, 2016-01) Derryberry, Elizabeth P; Danner, Raymond M; Danner, Julie E; Derryberry, Graham E; Phillips, Jennifer N; Lipshutz, Sara E; Gentry, Katherine; Luther, David ASoundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing at each site, further supporting the hypothesis that songs vary to transmit through noise in local soundscapes. Minimum frequencies leveled off at noisier sites, suggesting that minimum frequencies are constrained to an upper limit, possibly to retain the information content of wider bandwidths. We found evidence that site noise was a better predictor of song minimum frequency than territory noise in both anthropogenic and natural soundscapes, suggesting that cultural evolution rather than immediate behavioral flexibility is responsible for local song variation. Taken together, these results indicate that soundscapes shape song phenotype across both evolutionarily recent and long-standing soundscapes.