Browsing by Subject "Sperm Count"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Defects of prostate development and reproductive system in the estrogen receptor-alpha null male mice.(Endocrinology, 2009-01) Chen, Ming; Hsu, Iawen; Wolfe, Andrew; Radovick, Sally; Huang, KuoHsiang; Yu, Shengqiang; Chang, Chawnshang; Messing, Edward M; Yeh, ShuyuanThe estrogen receptor-alpha knockout (ERalphaKO, ERalpha-/-) mice were generated via the Cre-loxP system by mating floxed ERalpha mice with beta-actin (ACTB)-Cre mice. The impact of ERalpha gene deletion in the male reproductive system was investigated. The ACTB-Cre/ERalpha(-/-) male mice are infertile and have lost 90% of epididymal sperm when compared with wild-type mice. Serum testosterone levels in ACTB-Cre/ERalpha(-/-) male mice are 2-fold elevated. The ACTB-Cre/ERalpha(-/-) testes consist of atrophic and degenerating seminiferous tubules with less cellularity in the disorganized seminiferous epithelia. Furthermore, the ventral and dorsal-lateral prostates of ACTB-Cre/ERalpha(-/-) mice display reduced branching morphogenesis. Loss of ERalpha could also be responsible for the decreased fibroblast proliferation and changes in the stromal content. In addition, we found bone morphogenetic protein, a mesenchymal inhibitor of prostatic branching morphogenesis, is significantly up-regulated in the ACTB-Cre/ERalpha(-/-) prostates. Collectively, these results suggest that ERalpha is required for male fertility, acts through a paracrine mechanism to regulate prostatic branching morphogenesis, and is involved in the proliferation and differentiation of prostatic stromal compartment.Item Open Access Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor α knockout mice.(Asian journal of andrology, 2012-07) Chen, Ming; Yeh, Chiuan-Ren; Shyr, Chih-Rong; Lin, Hsiu-Hsia; Da, Jun; Yeh, ShuyuanEarly studies suggested that estrogen receptor alpha (ERα) is involved in estrogen-mediated imprinting effects in prostate development. We recently reported a more complete ERα knockout (KO) mouse model via mating β-actin Cre transgenic mice with floxed ERα mice. These ACTB-ERαKO male mice showed defects in prostatic branching morphogenesis, which demonstrates that ERα is necessary to maintain proliferative events in the prostate. However, within which prostate cell type ERα exerts those important functions remains to be elucidated. To address this, we have bred floxed ERα mice with either fibroblast-specific protein (FSP)-Cre or probasin-Cre transgenic mice to generate a mouse model that has deleted ERα gene in either stromal fibroblast (FSP-ERαKO) or epithelial (pes-ERαKO) prostate cells. We found that circulating testosterone and fertility were not altered in FSP-ERαKO and pes-ERαKO male mice. Prostates of FSP-ERαKO mice have less branching morphogenesis compared to that of wild-type littermates. Further analyses indicated that loss of stromal ERα leads to increased stromal apoptosis, reduced expression of insulin-like growth factor-1 (IGF-1) and FGF10, and increased expression of BMP4. Collectively, we have established the first in vivo prostate stromal and epithelial selective ERαKO mouse models and the results from these mice indicated that stromal fibroblast ERα plays important roles in prostatic branching morphogenesis via a paracrine fashion. Selective deletion of the ERα gene in mouse prostate epithelial cells by probasin-Cre does not affect the regular prostate development and homeostasis.