Browsing by Subject "Spinal Cord Stimulation"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.(Scientific reports, 2016-09-08) Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel ALAlthough electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.Item Open Access Chronic spinal cord electrical stimulation protects against 6-hydroxydopamine lesions.(Scientific reports, 2014-01-23) Yadav, Amol P; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M; Nicolelis, Miguel ALAlthough L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.Item Open Access Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease.(Movement disorders : official journal of the Movement Disorder Society, 2017-06) Yadav, Amol P; Nicolelis, Miguel ALSpinal cord stimulation has been used for the treatment of chronic pain for decades. In 2009, our laboratory proposed, based on studies in rodents, that electrical stimulation of the dorsal columns of the spinal cord could become an effective treatment for motor symptoms associated with Parkinson's disease (PD). Since our initial report in rodents and a more recent study in primates, several clinical studies have now described beneficial effects of dorsal column stimulation in parkinsonian patients. In primates, we have shown that dorsal column stimulation activates multiple structures along the somatosensory pathway and desynchronizes the pathological cortico-striatal oscillations responsible for the manifestation of PD symptoms. Based on recent evidence, we argue that neurological disorders such as PD can be broadly classified as diseases emerging from abnormal neuronal timing, leading to pathological brain states, and that the spinal cord could be used as a "channel" to transmit therapeutic electrical signals to disrupt these abnormalities. © 2017 International Parkinson and Movement Disorder Society.Item Open Access Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation.(PloS one, 2014-01) Howell, Bryan; Lad, Shivanand P; Grill, Warren MSpinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn, provides predictions that can be tested in future clinical studies assessing the potential therapeutic benefits of intradural SCS.Item Open Access Impact of Spinal Cord Stimulation on Opioid Dose Reduction: A Nationwide Analysis.(Neurosurgery, 2020-12) Adil, Syed M; Charalambous, Lefko T; Spears, Charis A; Kiyani, Musa; Hodges, Sarah E; Yang, Zidanyue; Lee, Hui-Jie; Rahimpour, Shervin; Parente, Beth; Greene, Kathryn A; McClellan, Mark; Lad, Shivanand PBackground
Opioid misuse in the USA is an epidemic. Utilization of neuromodulation for refractory chronic pain may reduce opioid-related morbidity and mortality, and associated economic costs.Objective
To assess the impact of spinal cord stimulation (SCS) on opioid dose reduction.Methods
The IBM MarketScan® database was retrospectively queried for all US patients with a chronic pain diagnosis undergoing SCS between 2010 and 2015. Opioid usage before and after the procedure was quantified as morphine milligram equivalents (MME).Results
A total of 8497 adult patients undergoing SCS were included. Within 1 yr of the procedure, 60.4% had some reduction in their opioid use, 34.2% moved to a clinically important lower dosage group, and 17.0% weaned off opioids entirely. The proportion of patients who completely weaned off opioids increased with decreasing preprocedure dose, ranging from 5.1% in the >90 MME group to 34.2% in the ≤20 MME group. The following variables were associated with reduced odds of weaning off opioids post procedure: long-term opioid use (odds ratio [OR]: 0.26; 95% CI: 0.21-0.30; P < .001), use of other pain medications (OR: 0.75; 95% CI: 0.65-0.87; P < .001), and obesity (OR: 0.75; 95% CI: 0.60-0.94; P = .01).Conclusion
Patients undergoing SCS were able to reduce opioid usage. Given the potential to reduce the risks of long-term opioid therapy, this study lays the groundwork for efforts that may ultimately push stakeholders to reduce payment and policy barriers to SCS as part of an evidence-based, patient-centered approach to nonopioid solutions for chronic pain.Item Open Access Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial.(Pain, 2019-06) Rigoard, Philippe; Basu, Surajit; Desai, Mehul; Taylor, Rod; Annemans, Lieven; Tan, Ye; Johnson, Mary Jo; Van den Abeele, Carine; North, Richard; PROMISE Study GroupDespite optimal medical management (OMM), low back pain (LBP) can be disabling, particularly after spinal surgery. Spinal cord stimulation (SCS) is effective in reducing neuropathic leg pain; however, evidence is limited for LBP. This prospective, open-label, parallel-group trial randomized (1:1) failed back surgery syndrome (FBSS) patients with predominant LBP to SCS plus OMM (SCS group) or OMM alone (OMM group) at 28 sites in Europe and the Americas. If trial stimulation was successful, a multicolumn SCS system was implanted. Outcomes were assessed at baseline (before randomization) and at 1, 3, 6, and 12 months after randomization. Patients could change treatment groups at 6 months. The primary outcome was the proportion of patients with ≥50% reduction in LBP (responder) at 6 months. Secondary outcomes included change in pain intensity, functional disability, and health-related quality of life (HRQoL). The results are posted at ClinicalTrials.gov under registration number NCT01697358. In the intent-to-treat analysis, there were more responders in the SCS group than in the OMM group (13.6%, 15/110 vs 4.6%, 5/108, difference 9% with 95% confidence interval 0.6%-17.5%, P = 0.036) at 6 months. The SCS group improved in all secondary outcomes compared with the OMM group. The OMM group only improved in HRQoL. In the SCS group, 17.6% (18/102) experienced SCS-related adverse events through 6 months, with 11.8% (12/102) requiring surgical reintervention. Adding multicolumn SCS to OMM improved pain relief, HRQoL, and function in a traditionally difficult-to-treat population of failed back surgery syndrome patients with predominant LBP. Improvements were sustained at 12 and 24 months.