Browsing by Subject "Staphylococcal Protein A"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Binding site on human immunoglobulin G for the affinity ligand HWRGWV.(Journal of molecular recognition : JMR, 2010-05) Yang, Haiou; Gurgel, Patrick V; Williams, D Keith; Bobay, Benjamin G; Cavanagh, John; Muddiman, David C; Carbonell, Ruben GAffinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383-Asn389 (SNGQPEN) located in the C(H)3 domain. Subsequent modeling has suggested a possible three-dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG.Item Unknown Multiscale conformational heterogeneity in staphylococcal protein a: possible determinant of functional plasticity.(Structure, 2014-10-07) Deis, Lindsay N; Pemble, Charles W; Qi, Yang; Hagarman, Andrew; Richardson, David C; Richardson, Jane S; Oas, Terrence GThe Staphylococcus aureus virulence factor staphylococcal protein A (SpA) is a major contributor to bacterial evasion of the host immune system, through high-affinity binding to host proteins such as antibodies. SpA includes five small three-helix-bundle domains (E-D-A-B-C) separated by conserved flexible linkers. Prior attempts to crystallize individual domains in the absence of a binding partner have apparently been unsuccessful. There have also been no previous structures of tandem domains. Here we report the high-resolution crystal structures of a single C domain, and of two B domains connected by the conserved linker. Both structures exhibit extensive multiscale conformational heterogeneity, which required novel modeling protocols. Comparison of domain structures shows that helix1 orientation is especially heterogeneous, coordinated with changes in side chain conformational networks and contacting protein interfaces. This represents the kind of structural plasticity that could enable SpA to bind multiple partners.Item Open Access Suppression of conformational heterogeneity at a protein-protein interface.(Proc Natl Acad Sci U S A, 2015-07-21) Deis, Lindsay N; Wu, Qinglin; Wang, You; Qi, Yang; Daniels, Kyle G; Zhou, Pei; Oas, Terrence GStaphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.