Browsing by Subject "Statistics & Probability"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access An Empirical Comparison of Multiple Imputation Methods for Categorical Data(The American Statistician, 2017-04-03) Akande, O; Li, F; Reiter, J© 2017 American Statistical Association. Multiple imputation is a common approach for dealing with missing values in statistical databases. The imputer fills in missing values with draws from predictive models estimated from the observed data, resulting in multiple, completed versions of the database. Researchers have developed a variety of default routines to implement multiple imputation; however, there has been limited research comparing the performance of these methods, particularly for categorical data. We use simulation studies to compare repeated sampling properties of three default multiple imputation methods for categorical data, including chained equations using generalized linear models, chained equations using classification and regression trees, and a fully Bayesian joint distribution based on Dirichlet process mixture models. We base the simulations on categorical data from the American Community Survey. In the circumstances of this study, the results suggest that default chained equations approaches based on generalized linear models are dominated by the default regression tree and Bayesian mixture model approaches. They also suggest competing advantages for the regression tree and Bayesian mixture model approaches, making both reasonable default engines for multiple imputation of categorical data. Supplementary material for this article is available online.Item Open Access Multi-type branching processes with time-dependent branching rates(Journal of Applied Probability, 2018-09-01) Dolgopyat, D; Hebbar, P; Koralov, L; Perlman, MCopyright © Applied Probability Trust 2018. Under mild nondegeneracy assumptions on branching rates in each generation, we provide a criterion for almost sure extinction of a multi-type branching process with time-dependent branching rates. We also provide a criterion for the total number of particles (conditioned on survival and divided by the expectation of the resulting random variable) to approach an exponential random variable as time goes to ∞.Item Open Access Spectral gaps in wasserstein distances and the 2d stochastic navier-stokes equations(Annals of Probability, 2008-11-01) Hairer, Martin; Mattingly, Jonathan CWe develop a general method to prove the existence of spectral gaps for Markov semigroups on Banach spaces. Unlike most previous work, the type of norm we consider for this analysis is neither a weighted supremum norm nor an Ł p-type norm, but involves the derivative of the observable as well and hence can be seen as a type of 1-Wasserstein distance. This turns out to be a suitable approach for infinite-dimensional spaces where the usual Harris or Doeblin conditions, which are geared toward total variation convergence, often fail to hold. In the first part of this paper, we consider semigroups that have uniform behavior which one can view as the analog of Doeblin's condition. We then proceed to study situations where the behavior is not so uniform, but the system has a suitable Lyapunov structure, leading to a type of Harris condition. We finally show that the latter condition is satisfied by the two-dimensional stochastic Navier-Stokes equations, even in situations where the forcing is extremely degenerate. Using the convergence result, we show that the stochastic Navier-Stokes equations' invariant measures depend continuously on the viscosity and the structure of the forcing. © Institute of Mathematical Statistics, 2008.