Browsing by Subject "Subarachnoid Hemorrhage"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A risk score for in-hospital death in patients admitted with ischemic or hemorrhagic stroke.(J Am Heart Assoc, 2013-01-28) Smith, Eric E; Shobha, Nandavar; Dai, David; Olson, DaiWai M; Reeves, Mathew J; Saver, Jeffrey L; Hernandez, Adrian F; Peterson, Eric D; Fonarow, Gregg C; Schwamm, Lee HBACKGROUND: We aimed to derive and validate a single risk score for predicting death from ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). METHODS AND RESULTS: Data from 333 865 stroke patients (IS, 82.4%; ICH, 11.2%; SAH, 2.6%; uncertain type, 3.8%) in the Get With The Guidelines-Stroke database were used. In-hospital mortality varied greatly according to stroke type (IS, 5.5%; ICH, 27.2%; SAH, 25.1%; unknown type, 6.0%; P<0.001). The patients were randomly divided into derivation (60%) and validation (40%) samples. Logistic regression was used to determine the independent predictors of mortality and to assign point scores for a prediction model in the overall population and in the subset with the National Institutes of Health Stroke Scale (NIHSS) recorded (37.1%). The c statistic, a measure of how well the models discriminate the risk of death, was 0.78 in the overall validation sample and 0.86 in the model including NIHSS. The model with NIHSS performed nearly as well in each stroke type as in the overall model including all types (c statistics for IS alone, 0.85; for ICH alone, 0.83; for SAH alone, 0.83; uncertain type alone, 0.86). The calibration of the model was excellent, as demonstrated by plots of observed versus predicted mortality. CONCLUSIONS: A single prediction score for all stroke types can be used to predict risk of in-hospital death following stroke admission. Incorporation of NIHSS information substantially improves this predictive accuracy.Item Open Access Haptoglobin genotype and aneurysmal subarachnoid hemorrhage: Individual patient data analysis.(Neurology, 2019-04) Gaastra, Ben; Ren, Dianxu; Alexander, Sheila; Bennett, Ellen R; Bielawski, Dawn M; Blackburn, Spiros L; Borsody, Mark K; Doré, Sylvain; Galea, James; Garland, Patrick; He, Tian; Iihara, Koji; Kawamura, Yoichiro; Leclerc, Jenna L; Meschia, James F; Pizzi, Michael A; Tamargo, Rafael J; Yang, Wuyang; Nyquist, Paul A; Bulters, Diederik O; Galea, IanObjective
To perform an individual patient-level data (IPLD) analysis and to determine the relationship between haptoglobin (HP) genotype and outcomes after aneurysmal subarachnoid hemorrhage (aSAH).Methods
The primary outcome was favorable outcome on the modified Rankin Scale or Glasgow Outcome Scale up to 12 months after ictus. The secondary outcomes were occurrence of delayed ischemic neurologic deficit, radiologic infarction, angiographic vasospasm, and transcranial Doppler evidence of vasospasm. World Federation of Neurological Surgeons (WFNS) scale, Fisher grade, age, and aneurysmal treatment modality were covariates for both primary and secondary outcomes. As preplanned, a 2-stage IPLD analysis was conducted, followed by these sensitivity analyses: (1) unadjusted; (2) exclusion of unpublished studies; (3) all permutations of HP genotypes; (4) sliding dichotomy; (5) ordinal regression; (6) 1-stage analysis; (7) exclusion of studies not in Hardy-Weinberg equilibrium (HWE); (8) inclusion of studies without the essential covariates; (9) inclusion of additional covariates; and (10) including only covariates significant in univariate analysis.Results
Eleven studies (5 published, 6 unpublished) totaling 939 patients were included. Overall, the study population was in HWE. Follow-up times were 1, 3, and 6 months for 355, 516, and 438 patients. HP genotype was not associated with any primary or secondary outcome. No trends were observed. When taken through the same analysis, higher age and WFNS scale were associated with an unfavorable outcome as expected.Conclusion
This comprehensive IPLD analysis, carefully controlling for covariates, refutes previous studies showing that HP1-1 associates with better outcome after aSAH.Item Open Access Long-Term Cognitive Deficits After Subarachnoid Hemorrhage in Rats.(Neurocritical care, 2016-10) Sasaki, Toshihiro; Hoffmann, Ulrike; Kobayashi, Motomu; Sheng, Huaxin; Ennaceur, Abdelkader; Lombard, Frederick W; Warner, David SBackground
Cognitive dysfunction can be a long-term complication following subarachnoid hemorrhage (SAH). Preclinical models have been variously characterized to emulate this disorder. This study was designed to directly compare long-term cognitive deficits in the context of similar levels of insult severity in the cisterna magna double-blood (DB) injection versus prechiasmatic blood (PB) injection SAH models.Methods
Pilot work identified blood injectate volumes necessary to provide similar mortality rates (20-25 %). Rats were then randomly assigned to DB or PB insults. Saline injection and naïve rats were used as controls. Functional and cognitive outcome was assessed over 35 days.Results
DB and PB caused similar transient rotarod deficits. PB rats exhibited decreased anxiety behavior on the elevated plus maze, while anxiety was increased in DB. DB and PB caused differential deficits in the novel object recognition and novel object location tasks. Morris water maze performance was similarly altered in both models (decreased escape latency and increased swimming speed). SAH caused histologic damage in the medial prefrontal cortex, perirhinal cortex, and hippocampal CA1, although severity of injury in the respective regions differed between DB and PB.Conclusion
Both SAH models caused long-term cognitive deficits in the context of similar insult severity. Cognitive deficits differed between the two models, as did distribution of histologic injury. Each model offers unique properties and both models may be useful for study of SAH-induced cognitive deficits.Item Open Access Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage.(The Journal of pharmacology and experimental therapeutics, 2011-09) Sheng, Huaxin; Spasojevic, Ivan; Tse, Hubert M; Jung, Jin Yong; Hong, Jun; Zhang, Zhiquan; Piganelli, Jon D; Batinic-Haberle, Ines; Warner, David SIntracerebroventricular treatment with redox-regulating Mn(III) N-hexylpyridylporphyrin (MnPorphyrin) is remarkably efficacious in experimental central nervous system (CNS) injury. Clinical development has been arrested because of poor blood-brain barrier penetration. Mn(III) meso-tetrakis (N-hexylpyridinium-2-yl) porphyrin (MnTnHex-2-PyP) was synthesized to include four six-carbon (hexyl) side chains on the core MnPorphyrin structure. This has been shown to increase in vitro lipophilicity 13,500-fold relative to the hydrophilic ethyl analog Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). In normal mice, we found brain MnTnHex-2-PyP accumulation to be ∼9-fold greater than MnTE-2-PyP 24 h after a single intraperitoneal dose. We then evaluated MnTnHex-2-PyP efficacy in outcome-oriented models of focal cerebral ischemia and subarachnoid hemorrhage. For focal ischemia, rats underwent 90-min middle cerebral artery occlusion. Parenteral MnTnHex-2-PyP treatment began 5 min or 6 h after reperfusion onset and continued for 7 days. Neurologic function was improved with both early (P = 0.002) and delayed (P = 0.002) treatment onset. Total infarct size was decreased with both early (P = 0.03) and delayed (P = 0.01) treatment. MnTnHex-2-PyP attenuated nuclear factor κB nuclear DNA binding activity and suppressed tumor necrosis factor-α and interleukin-6 expression. For subarachnoid hemorrhage, mice underwent perforation of the anterior cerebral artery and were treated with intraperitoneal MnTnHex-2-PyP or vehicle for 3 days. Neurologic function was improved (P = 0.02), and vasoconstriction of the anterior cerebral (P = 0.0005), middle cerebral (P = 0.003), and internal carotid (P = 0.015) arteries was decreased by MnTnHex-2-PyP. Side-chain elongation preserved MnPorphyrin redox activity, but improved CNS bioavailability sufficient to cause improved outcome from acute CNS injury, despite delay in parenteral treatment onset of up to 6 h. This advance now allows consideration of MnPorphyrins for treatment of cerebrovascular disease.Item Open Access Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage.(Stroke, 2011-02) Sheng, H; Reynolds, JD; Auten, RL; Demchenko, IT; Piantadosi, CA; Stamler, JS; Warner, DSBackground and purpose
S-nitrosylated hemoglobin (S-nitrosohemoglobin) has been implicated in the delivery of O(2) to tissues through the regulation of microvascular blood flow. This study tested the hypothesis that enhancement of S-nitrosylated hemoglobin by ethyl nitrite inhalation improves outcome after experimental subarachnoid hemorrhage (SAH).Methods
A preliminary dosing study identified 20 ppm ethyl nitrite as a concentration that produced a 4-fold increase in S-nitrosylated hemoglobin concentration with no increase in methemoglobin. Mice were subjected to endovascular perforation of the right anterior cerebral artery and were treated with 20 ppm ethyl nitrite in air, or air alone for 72 hours, after which neurologic function, cerebral vessel diameter, brain water content, cortical tissue Po(2), and parenchymal red blood cell flow velocity were measured.Results
At 72 hours after hemorrhage, air- and ethyl nitrite-exposed mice had similarly sized blood clots. Ethyl nitrite improved neurologic score and rotarod performance; abated SAH-induced constrictions in the ipsilateral anterior, middle cerebral, and internal carotid arteries; and prevented an increase in ipsilateral brain water content. Ethyl nitrite inhalation increased red blood cell flow velocity and cortical tissue Po(2) in the ipsilateral cortex with no effect on systemic blood pressure.Conclusions
Targeted S-nitrosylation of hemoglobin improved outcome parameters, including vessel diameter, tissue blood flow, cortical tissue Po(2), and neurologic function in a murine SAH model. Augmenting endogenous Po(2)-dependent delivery of NO bioactivity to selectively dilate the compromised cerebral vasculature has significant clinical potential in the treatment of SAH.