Browsing by Subject "Synaptic Transmission"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
Item Open Access Acetylcholine Modulates Cerebellar Granule Cell Spiking by Regulating the Balance of Synaptic Excitation and Inhibition.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2020-04) Fore, Taylor R; Taylor, Benjamin N; Brunel, Nicolas; Hull, CourtSensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit mechanisms that could mediate such modulation remain largely unknown. Here we investigate the role of ACh in regulating granule cell layer synaptic integration in male rats and mice of both sexes. We find that Golgi cells, interneurons that provide the sole source of inhibition to the granule cell layer, express both nicotinic and muscarinic cholinergic receptors. While acute ACh application can modestly depolarize some Golgi cells, the net effect of longer, optogenetically induced ACh release is to strongly hyperpolarize Golgi cells. Golgi cell hyperpolarization by ACh leads to a significant reduction in both tonic and evoked granule cell synaptic inhibition. ACh also reduces glutamate release from mossy fibers by acting on presynaptic muscarinic receptors. Surprisingly, despite these consistent effects on Golgi cells and mossy fibers, ACh can either increase or decrease the spike probability of granule cells as measured by noninvasive cell-attached recordings. By constructing an integrate-and-fire model of granule cell layer population activity, we find that the direction of spike rate modulation can be accounted for predominately by the initial balance of excitation and inhibition onto individual granule cells. Together, these experiments demonstrate that ACh can modulate population-level granule cell responses by altering the ratios of excitation and inhibition at the first stage of cerebellar processing.SIGNIFICANCE STATEMENT The cerebellum plays a key role in motor control and motor learning. While it is known that behavioral context can modify motor learning, the circuit basis of such modulation has remained unclear. Here we find that a key neuromodulator, ACh, can alter the balance of excitation and inhibition at the first stage of cerebellar processing. These results suggest that ACh could play a key role in altering cerebellar learning by modifying how sensorimotor input is represented at the input layer of the cerebellum.Item Open Access Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2019-08) Wang, Tian; Pahlberg, Johan; Cafaro, Jon; Frederiksen, Rikard; Cooper, AJ; Sampath, Alapakkam P; Field, Greg D; Chen, JeannieA major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.Item Open Access Astrocytes: Orchestrating synaptic plasticity?(Neuroscience, 2016-05) De Pittà, M; Brunel, N; Volterra, ASynaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.Item Open Access Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.(Proceedings of the National Academy of Sciences of the United States of America, 2012-03) Graupner, Michael; Brunel, NicolasMultiple stimulation protocols have been found to be effective in changing synaptic efficacy by inducing long-term potentiation or depression. In many of those protocols, increases in postsynaptic calcium concentration have been shown to play a crucial role. However, it is still unclear whether and how the dynamics of the postsynaptic calcium alone determine the outcome of synaptic plasticity. Here, we propose a calcium-based model of a synapse in which potentiation and depression are activated above calcium thresholds. We show that this model gives rise to a large diversity of spike timing-dependent plasticity curves, most of which have been observed experimentally in different systems. It accounts quantitatively for plasticity outcomes evoked by protocols involving patterns with variable spike timing and firing rate in hippocampus and neocortex. Furthermore, it allows us to predict that differences in plasticity outcomes in different studies are due to differences in parameters defining the calcium dynamics. The model provides a mechanistic understanding of how various stimulation protocols provoke specific synaptic changes through the dynamics of calcium concentration and thresholds implementing in simplified fashion protein signaling cascades, leading to long-term potentiation and long-term depression. The combination of biophysical realism and analytical tractability makes it the ideal candidate to study plasticity at the synapse, neuron, and network levels.Item Open Access Coherence potentials: loss-less, all-or-none network events in the cortex.(PLoS Biol, 2010-01-12) Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A; Plenz, DietmarTransient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular associations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks.Item Open Access Computational inference of neural information flow networks.(PLoS Comput Biol, 2006-11-24) Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich DDetermining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.Item Open Access Corollary discharge across the animal kingdom.(Nat Rev Neurosci, 2008-08) Crapse, Trinity B; Sommer, Marc AOur movements can hinder our ability to sense the world. Movements can induce sensory input (for example, when you hit something) that is indistinguishable from the input that is caused by external agents (for example, when something hits you). It is critical for nervous systems to be able to differentiate between these two scenarios. A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways. Here we review the CD circuits that have been uncovered by neurophysiological studies and suggest a functional taxonomic classification of CD across the animal kingdom. This broad understanding of CD circuits lays the groundwork for more challenging studies that combine neurophysiology and psychophysics to probe the role of CD in perception.Item Open Access Correlated firing among major ganglion cell types in primate retina.(The Journal of physiology, 2011-01) Greschner, Martin; Shlens, Jonathon; Bakolitsa, Constantina; Field, Greg D; Gauthier, Jeffrey L; Jepson, Lauren H; Sher, Alexander; Litke, Alan M; Chichilnisky, EJRetinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the major ganglion cell types in primate retina. Correlated firing among ON and OFF parasol, ON and OFF midget, and small bistratified cells, which together constitute roughly 75% of the input to higher visual areas, was studied using large-scale multi-electrode recordings. Correlated firing in the presence of constant, spatially uniform illumination exhibited characteristic strength, time course and polarity within and across cell types. Pairs of nearby cells with the same light response polarity were positively correlated; cells with the opposite polarity were negatively correlated. The strength of correlated firing declined systematically with distance for each cell type, in proportion to the degree of receptive field overlap. The pattern of correlated firing across cell types was similar at photopic and scotopic light levels, although additional slow correlations were present at scotopic light levels. Similar results were also observed in two other retinal ganglion cell types. Most of these observations are consistent with the hypothesis that shared noise from photoreceptors is the dominant cause of correlated firing. Surprisingly, small bistratified cells, which receive ON input from S cones, fired synchronously with ON parasol and midget cells, which receive ON input primarily from L and M cones. Collectively, these results provide an overview of correlated firing across cell types in the primate retina, and constraints on the underlying mechanisms.Item Open Access Differential expression of glutamate receptors in avian neural pathways for learned vocalization.(J Comp Neurol, 2004-08-09) Wada, Kazuhiro; Sakaguchi, Hironobu; Jarvis, Erich D; Hagiwara, MasatoshiLearned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds-parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas.Item Open Access For whom the bird sings: context-dependent gene expression.(Neuron, 1998-10) Jarvis, ED; Scharff, C; Grossman, MR; Ramos, JA; Nottebohm, FMale zebra finches display two song behaviors: directed and undirected singing. The two differ little in the vocalizations produced but greatly in how song is delivered. "Directed" song is usually accompanied by a courtship dance and is addressed almost exclusively to females. "Undirected" song is not accompanied by the dance and is produced when the male is in the presence of other males, alone, or outside a nest occupied by its mate. Here, we show that the anterior forebrain vocal pathway contains medial and lateral "cortical-basal ganglia" subdivisions that have differential ZENK gene activation depending on whether the bird sings female-directed or undirected song. Differences also occur in the vocal output nucleus, RA. Thus, although these two vocal behaviors are very similar, their brain activation patterns are dramatically different.Item Open Access Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.(J Neurophysiol, 2001-04) Sommer, MA; Wurtz, RHMany neurons within prefrontal cortex exhibit a tonic discharge between visual stimulation and motor response. This delay activity may contribute to movement, memory, and vision. We studied delay activity sent from the frontal eye field (FEF) in prefrontal cortex to the superior colliculus (SC). We evaluated whether this efferent delay activity was related to movement, memory, or vision, to establish its possible functions. Using antidromic stimulation, we identified 66 FEF neurons projecting to the SC and we recorded from them while monkeys performed a Go/Nogo task. Early in every trial, a monkey was instructed as to whether it would have to make a saccade (Go) or not (Nogo) to a target location, which permitted identification of delay activity related to movement. In half of the trials (memory trials), the target disappeared, which permitted identification of delay activity related to memory. In the remaining trials (visual trials), the target remained visible, which permitted identification of delay activity related to vision. We found that 77% (51/66) of the FEF output neurons had delay activity. In 53% (27/51) of these neurons, delay activity was modulated by Go/Nogo instructions. The modulation preceded saccades made into only part of the visual field, indicating that the modulation was movement-related. In some neurons, delay activity was modulated by Go/Nogo instructions in both memory and visual trials and seemed to represent where to move in general. In other neurons, delay activity was modulated by Go/Nogo instructions only in memory trials, which suggested that it was a correlate of working memory, or only in visual trials, which suggested that it was a correlate of visual attention. In 47% (24/51) of FEF output neurons, delay activity was unaffected by Go/Nogo instructions, which indicated that the activity was related to the visual stimulus. In some of these neurons, delay activity occurred in both memory and visual trials and seemed to represent a coordinate in visual space. In others, delay activity occurred only in memory trials and seemed to represent transient visual memory. In the remainder, delay activity occurred only in visual trials and seemed to be a tonic visual response. In conclusion, the FEF sends diverse delay activity signals related to movement, memory, and vision to the SC, where the signals may be used for saccade generation. Downstream transmission of various delay activity signals may be an important, general way in which the prefrontal cortex contributes to the control of movement.Item Open Access Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study.(Neural plasticity, 2016-01) De Pittà, Maurizio; Brunel, NicolasGlutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.Item Open Access Non-monotonic effects of GABAergic synaptic inputs on neuronal firing.(PLoS computational biology, 2022-06-06) Abed Zadeh, Aghil; Turner, Brandon D; Calakos, Nicole; Brunel, NicolasGABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.Item Open Access Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina.(PLoS biology, 2019-04) Grove, James CR; Hirano, Arlene A; de Los Santos, Janira; McHugh, Cyrus F; Purohit, Shashvat; Field, Greg D; Brecha, Nicholas C; Barnes, StevenThe stream of visual information sent from photoreceptors to second-order bipolar cells is intercepted by laterally interacting horizontal cells that generate feedback to optimize and improve the efficiency of signal transmission. The mechanisms underlying the regulation of graded photoreceptor synaptic output in this nonspiking network have remained elusive. Here, we analyze with patch clamp recording the novel mechanisms by which horizontal cells control pH in the synaptic cleft to modulate photoreceptor neurotransmitter release. First, we show that mammalian horizontal cells respond to their own GABA release and that the results of this autaptic action affect cone voltage-gated Ca2+ channel (CaV channel) gating through changes in pH. As a proof-of-principle, we demonstrate that chemogenetic manipulation of horizontal cells with exogenous anion channel expression mimics GABA-mediated cone CaV channel inhibition. Activation of these GABA receptor anion channels can depolarize horizontal cells and increase cleft acidity via Na+/H+ exchanger (NHE) proton extrusion, which results in inhibition of cone CaV channels. This action is effectively counteracted when horizontal cells are sufficiently hyperpolarized by increased GABA receptor (GABAR)-mediated HCO3- efflux, alkalinizing the cleft and disinhibiting cone CaV channels. This demonstrates how hybrid actions of GABA operate in parallel to effect voltage-dependent pH changes, a novel mechanism for regulating synaptic output.Item Open Access Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer.(Neuron, 2007-09) Lu, Jiuyi; Helton, Thomas D; Blanpied, Thomas A; Rácz, Bence; Newpher, Thomas M; Weinberg, Richard J; Ehlers, Michael DEndocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.Item Open Access Spike avalanches exhibit universal dynamics across the sleep-wake cycle.(PLoS One, 2010-11-30) Ribeiro, Tiago L; Copelli, Mauro; Caixeta, Fábio; Belchior, Hindiael; Chialvo, Dante R; Nicolelis, Miguel AL; Ribeiro, SidartaBACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.Item Open Access Spine microdomains for postsynaptic signaling and plasticity.(Trends in cell biology, 2009-05) Newpher, Thomas M; Ehlers, Michael DChanges in the molecular composition and signaling properties of excitatory glutamatergic synapses onto dendritic spines mediate learning-related plasticity in the mammalian brain. This molecular adaptation serves as the most celebrated cell biological model for learning and memory. Within their micron-sized dimensions, dendritic spines restrict the diffusion of signaling molecules and spatially confine the activation of signal transduction pathways. Much of this local regulation occurs by spatial compartmentalization of glutamate receptors. Here, we review recently identified cell biological mechanisms regulating glutamate receptor mobility within individual dendritic spines. We discuss the emerging functions of glutamate receptors residing within sub-spine microdomains and propose a model for distinct signaling platforms with specialized functions in synaptic plasticity.Item Open Access Toward a Neurocentric View of Learning.(Neuron, 2017-07) Titley, Heather K; Brunel, Nicolas; Hansel, ChristianSynaptic plasticity (e.g., long-term potentiation [LTP]) is considered the cellular correlate of learning. Recent optogenetic studies on memory engram formation assign a critical role in learning to suprathreshold activation of neurons and their integration into active engrams ("engram cells"). Here we review evidence that ensemble integration may result from LTP but also from cell-autonomous changes in membrane excitability. We propose that synaptic plasticity determines synaptic connectivity maps, whereas intrinsic plasticity-possibly separated in time-amplifies neuronal responsiveness and acutely drives engram integration. Our proposal marks a move away from an exclusively synaptocentric toward a non-exclusive, neurocentric view of learning.