Browsing by Subject "Synovitis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access B cells in rheumatoid synovitis.(Arthritis Res Ther, 2005) Weyand, Cornelia M; Seyler, Thorsten M; Goronzy, Jörg JIn rheumatoid arthritis, T cells, B cells, macrophages, and dendritic cells invade the synovial membranes, establishing complex microstructures that promote inflammatory/tissue destructive lesions. B cell involvement has been considered to be limited to autoantibody production. However, recent studies suggest that B cells support rheumatoid disease through other mechanisms. A critical element of rheumatoid synovitis is the process of ectopic lymphoid neogenesis, with highly efficient lymphoid architectures established in a nonlymphoid tissue site. Rheumatoid synovitis recapitulates the pathways of lymph node formation, and B cells play a key role in this process. Furthermore, studies of rheumatoid lesions implanted in immunodeficient mice suggest that T cell activation in synovitis is B cell dependent, indicating the role played by B cells in presenting antigens and providing survival signals.Item Open Access Semi-quantitative MRI biomarkers of knee osteoarthritis progression in the FNIH biomarkers consortium cohort - Methodologic aspects and definition of change.(BMC musculoskeletal disorders, 2016-11-10) Roemer, Frank W; Guermazi, Ali; Collins, Jamie E; Losina, Elena; Nevitt, Michael C; Lynch, John A; Katz, Jeffrey N; Kwoh, C Kent; Kraus, Virginia B; Hunter, David JTo describe the scoring methodology and MRI assessments used to evaluate the cross-sectional features observed in cases and controls, to define change over time for different MRI features, and to report the extent of changes over a 24-month period in the Foundation for National Institutes of Health Osteoarthritis Biomarkers Consortium study nested within the larger Osteoarthritis Initiative (OAI) Study.We conducted a nested case-control study. Cases (n = 406) were knees having both radiographic and pain progression. Controls (n = 194) were knee osteoarthritis subjects who did not meet the case definition. Groups were matched for Kellgren-Lawrence grade and body mass index. MRIs were acquired using 3 T MRI systems and assessed using the semi-quantitative MOAKS system. MRIs were read at baseline and 24 months for cartilage damage, bone marrow lesions (BML), osteophytes, meniscal damage and extrusion, and Hoffa- and effusion-synovitis. We provide the definition and distribution of change in these biomarkers over time.Seventy-three percent of the cases had subregions with BML worsening (vs. 66 % in controls) (p = 0.102). Little change in osteophytes was seen over 24 months. Twenty-eight percent of cases and 10 % of controls had worsening in meniscal scores in at least one subregion (p < 0.001). Seventy-three percent of cases and 53 % of controls had at least one area with worsening in cartilage surface area (p < 0.001). More cases experienced worsening in Hoffa- and effusion synovitis than controls (17 % vs. 6 % (p < 0.001); 41 % vs. 18 % (p < 0.001), respectively).A wide range of MRI-detected structural pathologies was present in the FNIH cohort. More severe changes, especially for BMLs, cartilage and meniscal damage, were detected primarily among the case group suggesting that early changes in multiple structural domains are associated with radiographic worsening and symptomatic progression.Item Open Access Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis.(Arthritis Res Ther, 2014-06-25) Furman, Bridgette D; Mangiapani, Daniel S; Zeitler, Evan; Bailey, Karsyn N; Horne, Phillip H; Huebner, Janet L; Kraus, Virginia B; Guilak, Farshid; Olson, Steven AINTRODUCTION: Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. METHODS: Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. RESULTS: Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. CONCLUSION: These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA.