Browsing by Subject "Systems Biology"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Aging and health--a systems biology perspective. Introduction.(Interdiscip Top Gerontol, 2015) Jazwinski, S Michal; Yashin, Anatoliy IItem Open Access Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.(PLoS One, 2010-05-20) Dahdul, Wasila M; Balhoff, James P; Engeman, Jeffrey; Grande, Terry; Hilton, Eric J; Kothari, Cartik; Lapp, Hilmar; Lundberg, John G; Midford, Peter E; Vision, Todd J; Westerfield, Monte; Mabee, Paula MBACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.Item Open Access Modeling endocrine control of the pituitary-ovarian axis: androgenic influence and chaotic dynamics.(Bulletin of mathematical biology, 2014-01) Hendrix, Angelean O; Hughes, Claude L; Selgrade, James FMathematical models of the hypothalamus-pituitary-ovarian axis in women were first developed by Schlosser and Selgrade in 1999, with subsequent models of Harris-Clark et al. (Bull. Math. Biol. 65(1):157-173, 2003) and Pasteur and Selgrade (Understanding the dynamics of biological systems: lessons learned from integrative systems biology, Springer, London, pp. 38-58, 2011). These models produce periodic in-silico representation of luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2), progesterone (P4), inhibin A (InhA), and inhibin B (InhB). Polycystic ovarian syndrome (PCOS), a leading cause of cycle irregularities, is seen as primarily a hyper-androgenic disorder. Therefore, including androgens into the model is necessary to produce simulations relevant to women with PCOS. Because testosterone (T) is the dominant female androgen, we focus our efforts on modeling pituitary feedback and inter-ovarian follicular growth properties as functions of circulating total T levels. Optimized parameters simultaneously simulate LH, FSH, E2, P4, InhA, and InhB levels of Welt et al. (J. Clin. Endocrinol. Metab. 84(1):105-111, 1999) and total T levels of Sinha-Hikim et al. (J. Clin. Endocrinol. Metab. 83(4):1312-1318, 1998). The resulting model is a system of 16 ordinary differential equations, with at least one stable periodic solution. Maciel et al. (J. Clin. Endocrinol. Metab. 89(11):5321-5327, 2004) hypothesized that retarded early follicle growth resulting in "stockpiling" of preantral follicles contributes to PCOS etiology. We present our investigations of this hypothesis and show that varying a follicular growth parameter produces preantral stockpiling and a period-doubling cascade resulting in apparent chaotic menstrual cycle behavior. The new model may allow investigators to study possible interventions returning acyclic patients to regular cycles and guide developments of individualized treatments for PCOS patients.Item Open Access Renal systems biology of patients with systemic inflammatory response syndrome.(Kidney Int, 2015-10) Tsalik, Ephraim L; Willig, Laurel K; Rice, Brandon J; van Velkinburgh, Jennifer C; Mohney, Robert P; McDunn, Jonathan E; Dinwiddie, Darrell L; Miller, Neil A; Mayer, Eric S; Glickman, Seth W; Jaehne, Anja K; Glew, Robert H; Sopori, Mohan L; Otero, Ronny M; Harrod, Kevin S; Cairns, Charles B; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen F; Langley, Raymond JA systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular-weight proteins and acute-phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and N-acetylaspartate were inversely correlated with the majority of significantly downregulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes were not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness.