Browsing by Subject "TNF-Related Apoptosis-Inducing Ligand"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5.(BMC Cancer, 2008-11-07) Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, ShuliBACKGROUND: Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. METHODS: Human medulloblastoma cells were treated with HGF for 24-72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. RESULTS: In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24-72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P<0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). CONCLUSION: Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms.Item Open Access Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism.(Breast Cancer Res Treat, 2013-01) Allensworth, Jennifer L; Sauer, Scott J; Lyerly, H Kim; Morse, Michael A; Devi, Gayathri RX-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K (d) > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.Item Open Access The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease.(J Clin Invest, 2010-01) Na, Il-Kang; Lu, Sydney X; Yim, Nury L; Goldberg, Gabrielle L; Tsai, Jennifer; Rao, Uttam; Smith, Odette M; King, Christopher G; Suh, David; Hirschhorn-Cymerman, Daniel; Palomba, Lia; Penack, Olaf; Holland, Amanda M; Jenq, Robert R; Ghosh, Arnab; Tran, Hien; Merghoub, Taha; Liu, Chen; Sempowski, Gregory D; Ventevogel, Melissa; Beauchemin, Nicole; van den Brink, Marcel RMThymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.