Browsing by Subject "TRPV4"
Results Per Page
Sort Options
Item Open Access Functional Analysis of Ion Selectivity and Permeation Mechanisms of the C. elegans TRPV Channel OSM-9(2011) Lindy, Amanda SueFor all organisms, the ability to sense and react to noxious environments is fundamental to their survival. For multi-celled organisms this process generally involves a nervous system and an extensive network of signal transduction pathways. TRPV ion channels have been shown to participate in signal transduction in response to noxious stimuli. At the cellular level these channels function in sensing of mechanical, thermal, and osmotic stimuli, and at the organismal level they function in homeostasis and nociception. TRPV ion channels participate in nociceptive signal transduction via cation influx, but exactly how these channels function at a mechanistic level and lead to activation of the cell or induction of a specific behavior is elusive. Previous research has shown that the pore-forming unit of an ion channel is critical for channel regulation, gating, ion selectivity, and ion permeation. Various regulatory domains have been identified to date in the pore-forming unit of TRP channels and a clearer picture of channel gating is beginning to emerge, but less is known about ion permeation.
To better understand the specific domains that are critical to ion capture, selectivity, and permeation in TRPV channels, we investigated the function of these regions using the C. elegans TRPV channel OSM-9 in vivo, and the mammalian TRPV channel TRPV4 in heterologous cell culture. OSM-9 is the functional ortholog of mammalian TRPV4 and it is likely that critical domains identified in OSM-9 are functionally conserved in TRPV4 and play a similar role in other TRPV channels. OSM-9 is expressed in the ASH neurons and is responsible for all of the behaviors initiated by that cell. The stereotypical avoidance behavior mediated by ASH, in response to noxious stimuli, serves as a model for nociception in vertebrates. As OSM-9 is necessary for all of these behavioral responses, activation of ASH acts as a read-out for OSM-9 function.
Through targeted mutagenesis of the OSM-9 loop domains and transgenic expression directed to the ASH head sensory neurons in an osm-9 null background, we discovered a critical role for the amino acids both N- and C- terminal to the pore helix in osmotic avoidance behavior. We confirmed the existence of a selectivity filter C-terminal to the pore helix and revealed that the turret is critical for channel function, possibly as a component of the inactivation gate.
We first identified the boundaries of the selectivity filter to be M601-F609. We also determined what properties of those residues were critical to Ca2+ and Na+ selectivity. In vivo Ca2+ imaging strongly suggested that residues Y604, D605, and F609 are critical for Ca2+ entry into the cell. Patch-clamp electrophysiology of a chimeric ion channel consisting largely of rat TRPV4, but encompassing transmembranes 5 through 6 of OSM-9, revealed that OSM-9 conducts both Ca2+ and Na+. Mutation Y604G disrupted both Ca2+ and Na+ conductance, whereas mutations Y604F and Y606A increased or maintained Na+ conductance and severely reduced Ca2+ conductance, while maintaining avoidance behavior. Homology modeling of OSM-9, based on an alignment of OSM-9 to Kv1.2, suggests that Y604 and F609 serve structural roles in maintaining filter constraints. Thus, aromatic and negative residues in the OSM-9 selectivity filter are critical to ion permeation and selectivity.
Our studies involving the selectivity filter support previous research that the selectivity filter is critical for TRP channel function. We also provide evidence that the selectivity filter is critical for nocifensive animal behavior. Fewer studies, however, have investigated the TM5-pore helix linker, known as the turret. The turret is believed to function in the binding of ligands and toxins in K+ channels, and more recently was suggested to be critical for temperature sensing in TRPV1. We investigated the function of the turret residues in several sensory submodalities of the OSM-9 channel and found that all deletions tested result in channel defects, including gain- and loss-of-function phenotypes. Several charge reversal mutations in the OSM-9 turret also resulted in partial defects. The discovery of a gain-of-function mutation indicates that the turret functions in gating. When the turret is mutated in this way, the channel is unable to enter into the inactivated state, allowing continued ion influx after repeated stimulation. The loss-of-function phenotypes indicate that the secondary structure of the turret is critical to the function of the channel, and perhaps gating. These findings, combined with the observed charge-reversal defects, support the conclusion that the turret is necessary for transducing conformational changes in response to stimuli.
Our in vivo findings on the external pore forming structures increase the understanding of ion permeation in TRP channels and clarify mechanisms of activation in nociceptor neurons in vivo. Furthermore, these studies enhance our insights into evolution of mammalian nociception in view of the established functional orthology of OSM-9 and TRPV4.
Item Open Access In Vitro Calcium Imaging of Magnetogenetic Ion Channels TRPV1FeRIC and TRPV4FeRIC(2018) Gibbs, EricFerritin-based magnetogenetic ion channels are promising new tools for non-invasive manipulation of ion channel activity. The use of these channels in animals has been promising but in vitro experiments in cultured cells have been inconclusive. This report focuses on channels TRPV1FeRIC and TRPV4FeRIC whose channel activity is reportedly sensitive to an alternating magnetic field (AMF) at 175 MHz. In vitro work on these channels has previously been done, but those experiments did not have the necessary controls and had significant confounding factors. This dissertation addresses these problems and redesigns AMF calcium imaging experiments to more accurately measure an AMF response. After many experiments and careful analysis, it is concluded that 175 MHz AMF exposure does not change intracellular calcium concentration in HEK 293T cells expressing TRPV1FeRIC or TRPV4FeRIC.
Item Open Access Sensory neuron-TRPV4 modulates temporomandibular disorder pain via CGRP in mice.(The journal of pain, 2022-12) Suttle, Abbie; Wang, Peng; Dias, Fabiana C; Zhang, Qiaojuan; Luo, Yuhui; Simmons, Lauren; Bortsov, Andrey; Tchivileva, Inna E; Nackley, Andrea G; Chen, YongTemporomandibular disorder (TMD) pain that involves inflammation and injury in the temporomandibular joint (TMJ) and/or masticatory muscle is the most common form of orofacial pain. We recently found that transient receptor potential vanilloid-4 (TRPV4) in trigeminal ganglion (TG) neurons is upregulated after TMJ inflammation, and TRPV4 co-expresses with calcitonin gene-related peptide (CGRP) in TMJ-innervating TG neurons. Here, we extended these findings to determine the specific contribution of TRPV4 in TG neurons to TMD pain, and examine whether sensory neuron-TRPV4 modulates TMD pain via CGRP. In mouse models of TMJ inflammation or masseter muscle injury, sensory neuron-Trpv4 conditional knockout (cKO) mice displayed reduced pain. Co-expression of TRPV4 and CGRP in TMJ- or masseter muscle-innervating TG neurons was increased after TMJ inflammation and masseter muscle injury, respectively. Activation of TRPV4-expressing TG neurons triggered secretion of CGRP, which was associated with increased levels of CGRP in peri-TMJ tissues, masseter muscle, spinal trigeminal nucleus, and plasma in both models. Local injection of CGRP into the TMJ or masseter muscle evoked acute pain in naïve mice, while blockade of CGRP receptor attenuated pain in mouse models of TMD. These results suggest that TRPV4 in TG neurons contributes to TMD pain by potentiating CGRP secretion. Perspective: This study demonstrates that activation of TRPV4 in TG sensory neurons drives pain by potentiating the release of pain mediator CGRP in mouse models of TMJ inflammation and masseter muscle injury. Targeting TRPV4 and CGRP may be of clinical potential in alleviating TMD pain.Item Open Access Spinal cord dorsal horn sensory gate in preclinical models of chemotherapy-induced painful neuropathy and contact dermatitis chronic itch becomes less leaky with Kcc2 gene expression-enhancing treatments.(Frontiers in molecular neuroscience, 2022-01) Yeo, Michele; Zhang, Qiaojuan; Ding, LeAnne; Shen, Xiangjun; Chen, Yong; Liedtke, WolfgangLow intraneuronal chloride in spinal cord dorsal horn (SCDH) pain relay neurons is of critical relevance for physiological transmission of primary sensory afferents because low intraneuronal chloride dictates GABA-ergic and glycin-ergic neurotransmission to be inhibitory. If neuronal chloride rises to unphysiological levels, the primary sensory gate in the spinal cord dorsal horn becomes corrupted, with resulting behavioral hallmarks of hypersensitivity and allodynia, for example in pathological pain. Low chloride in spinal cord dorsal horn neurons relies on the robust gene expression of Kcc2 and sustained transporter function of the KCC2 chloride-extruding electroneutral transporter. Based on a recent report where we characterized the GSK3-inhibitory small molecule, kenpaullone, as a Kcc2 gene expression-enhancer that potently repaired diminished Kcc2 expression and KCC2 transporter function in SCDH pain relay neurons, we extend our recent findings by reporting (i) effective pain control in a preclinical model of taxol-induced painful peripheral neuropathy that was accomplished by topical application of a TRPV4/TRPA1 dual-inhibitory compound (compound 16-8), and was associated with the repair of diminished Kcc2 gene expression in the SCDH; and (ii) potent functioning of kenpaullone as an antipruritic in a DNFB contact dermatitis preclinical model. These observations suggest that effective peripheral treatment of chemotherapy-induced painful peripheral neuropathy impacts the pain-transmitting neural circuit in the SCDH in a beneficial manner by enhancing Kcc2 gene expression, and that chronic pruritus might be relayed in the primary sensory gate of the spinal cord, following similar principles as pathological pain, specifically relating to the critical functioning of Kcc2 gene expression and the KCC2 transporter function.Item Open Access Transient Receptor Potential Vanilloid 4 Ion Channel Functions as a Pruriceptor in Epidermal Keratinocytes to Evoke Histaminergic Itch.(J Biol Chem, 2016-05-06) Chen, Yong; Fang, Quan; Wang, Zilong; Zhang, Jennifer Y; MacLeod, Amanda S; Hall, Russell P; Liedtke, Wolfgang BTRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.Item Open Access TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor.(Pain, 2014-12) Chen, Yong; Kanju, Patrick; Fang, Quan; Lee, Suk Hee; Parekh, Puja K; Lee, Whasil; Moore, Carlene; Brenner, Daniel; Gereau, Robert W; Wang, Fan; Liedtke, WolfgangDetection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.