Browsing by Subject "Task Performance and Analysis"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Differences in Cognitive Task Performance, Reinforcement Enhancement, and Nicotine Dependence Between Menthol and Nonmenthol Cigarette Smokers.(Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco, 2021-10) Jao, Nancy C; Levin, Edward D; Simon, Melissa A; Hitsman, BrianIntroduction
Menthol has been shown to target similar brain regions and neural receptors as nicotine, yet the association between menthol cigarette use and cognitive performance remains unknown.Aims and methods
This study examined differences in cognitive task performance between menthol (MS) and nonmenthol (NMS) cigarette smokers after acute cigarette consumption. Sixty white and black and/or African American, nonabstinent, MS (n = 30) and NMS (n = 30) were assessed presmoking and postsmoking their preferred cigarette on four computerized tasks: Continuous Performance Task (CPT; alerting attention), N-Back Task (working memory), Finger Tapping Task (motor control), and Apple Picker Task (reinforcement enhancement). Self-reported nicotine dependence and objective smoking topography measures were also compared between groups.Results
Initial unadjusted analyses showed a significant effect of cigarette type × time on CPT speed (p = .042), where MS improved while NMS group worsened in CPT speed after smoking. After controlling for baseline cigarette craving and cigarette nicotine levels, the effect of cigarette type × time for all cognitive outcomes was statistically nonsignificant (ps > .05). However, there remained a significant effect of cigarette type, where MS versus NMS had poorer CPT (p = .046) and N-Back Task accuracy (p = .006) but faster N-Back speed (p = .039). There were no statistically significant differences between groups on reinforcement enhancement, nicotine dependence, or smoking behavior outcomes (ps > .05).Conclusions
Contrary to our hypotheses, results did not find a significant effect of cigarette type on the change in cognitive performance after acute smoking in nonabstinent smokers. Further studies are needed to clarify the specific pharmacological effects of nicotine and menthol on cognitive functioning.Implications
The current study is the first to compare the potential enhancement of cognitive task performance after acute cigarette smoking between satiated menthol and nonmenthol cigarette smokers. Study results suggest that acute menthol cigarette use may not enhance cognitive function above and beyond nonmenthol cigarettes to increase dependence among menthol smokers. However, the contribution of other psychological factors (eg, craving, mood) and cigarette characteristics (eg, nicotine content) may be involved in cognitive function enhancement to perpetuate dependence and smoking persistence for menthol smokers.Item Open Access Effects of adult age and blood pressure on executive function and speed of processing.(Experimental aging research, 2010-04) Bucur, Barbara; Madden, David JPrevious research has established that the effects of chronically increased blood pressure (BP) on cognition interact with adult age, but the relevant cognitive processes are not well defined. In this cross-sectional study, using a sample matched for age, years of education, and sex, 134 individuals with either normal BP (n = 71) or chronically high BP (n = 63) were categorized into younger (19-39 years), middle-aged (41-58 years), and older (60-79 years) groups. Using a between-subjects analysis of variance (ANOVA), covarying for race and years of education, composite measures of executive function and perceptual speed both exhibited age-related decline. The executive function measure, however, was associated with a differential decline in high BP older adults. This result held even when the executive function scores were covaried for speed, demonstrating an independent, age-related effect of higher BP on executive function.Item Open Access Functional brain connectivity and cognition: effects of adult age and task demands.(Neurobiology of aging, 2013-08) Chou, Ying-Hui; Chen, Nan-Kuei; Madden, David JPrevious neuroimaging research has documented that patterns of intrinsic (resting state) functional connectivity (FC) among brain regions covary with individual measures of cognitive performance. Here, we examined the relation between intrinsic FC and a reaction time (RT) measure of performance, as a function of age group and task demands. We obtained filtered, event-related functional magnetic resonance imaging data, and RT measures of visual search performance, from 21 younger adults (19-29 years old) and 21 healthy, older adults (60-87 years old). Age-related decline occurred in the connectivity strength in multiple brain regions, consistent with previous findings. Among 8 pairs of regions, across somatomotor, orbitofrontal, and subcortical networks, increasing FC was associated with faster responding (lower RT). Relative to younger adults, older adults exhibited a lower strength of this RT-connectivity relation and greater disruption of this relation by a salient but irrelevant display item (color singleton distractor). Age-related differences in the covariation of intrinsic FC and cognitive performance vary as a function of task demands.Item Open Access Neuroprosthetic Decoder Training as Imitation Learning.(PLoS Comput Biol, 2018-02-02) Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John PNeuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.Item Open Access The impact of anxiety-inducing distraction on cognitive performance: a combined brain imaging and personality investigation.(PLoS One, 2010-11-30) Denkova, Ekaterina; Wong, Gloria; Dolcos, Sanda; Sung, Keen; Wang, Lihong; Coupland, Nicholas; Dolcos, FlorinBACKGROUND: Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance. METHODOLOGY/PRINCIPAL FINDINGS: Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM) task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus--FG) exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex--PFC) exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction. CONCLUSIONS: These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with distracting emotions. Our study sheds light on the neural correlates of emotion-cognition interactions in normal behaviour, which has implications for understanding factors that may influence susceptibility to affective disorders, in general, and to anxiety disorders, in particular.Item Open Access The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task.(PLoS One, 2011) Boehler, Carsten N; Appelbaum, Lawrence G; Krebs, Ruth M; Chen, Ling-Chia; Woldorff, Marty GInhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.Item Open Access Visual abilities distinguish pitchers from hitters in professional baseball.(Journal of sports sciences, 2018-01) Klemish, David; Ramger, Benjamin; Vittetoe, Kelly; Reiter, Jerome P; Tokdar, Surya T; Appelbaum, Lawrence GregoryThis study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.Item Open Access Visual-motor expertise in athletes: Insights from semiparametric modelling of 2317 athletes tested on the Nike SPARQ Sensory Station.(Journal of sports sciences, 2020-02) Burris, Kyle; Liu, Sicong; Appelbaum, LawrenceElite athletes not only run faster, hit harder, and jump higher, but also see and react better. However, the specific visual-motor skills that differentiate high-achieving athletes are still not well understood. In this paper we examine 2317 athletes (1871 male) tested on the Nike SPARQ Sensory Station, a digital test battery measuring visual, perceptual and motor skills relevant for sports performance. We develop a multivariate Gaussian transformation model to robustly estimate visual-motor differences by level, gender, and sport type. Results demonstrate that visual-motor performance is superior for athletes at higher levels, with males faster at near-far eye movements and females faster at eye-hand reaction times. Interestingly, athletes who play interceptive sports such as baseball and tennis exhibit better measures of visual clarity, contrast sensitivity and simple reaction time, while athletes from strategic sports like soccer and basketball have higher measures of spatial working memory. These findings provide quantitative evidence of domain-specific visual expertise in athletes.