Browsing by Subject "Telomere"
Results Per Page
Sort Options
Item Open Access Characterization of the Novel Telomere Associated Protein: hSnm1B(2008-04-10) Freibaum, Brian DavidTelomeres are the ends of chromosomes which are composed of repetitive DNA sequence and telomere associated proteins. In C. elegans, the protein F39H2.5 was found to associate with the telomere, regulating both telomere length and genomic integrity. F39H2.5 is a member of the β-CASP family of proteins that are known to possess nuclease activity on DNA substrates. I thus sought to address whether any of the human β-CASP family proteins associated with telomeres. Here I show that hSnm1B localized to the telomere indirectly, via interaction with the double-stranded telomere binding protein TRF2. The terminal 37 amino acids of hSnm1B are necessary and sufficient for binding TRF2, and moreover that binding to TRF2 stabilized hSnm1B protein by preventing ubiquitination. In the absence of exogenous TRF2 this domain acted as a degron, promoting protein instability. I thus termed the domain the Protection And INstability (PAIN) domain. I hypothesize that TRF2 binding ensures that hSnm1B will only accumulate at telomeres by preventing the degradation of hSnm1B. However, hSnm1B stability appears to be further regulated, as telomere specific DNA damage stabilized hSnm1B independent of the PAIN domain. Thus, it appears that the telomere associated protein, hSnm1B, is regulated by protein stability in a manner that is both dependent and independent of the PAIN domain.
Item Open Access Distinct functions of POT1 at telomeres.(2008) Kendellen, Megan FullerTelomeres are nucleoprotein complexes that constitute the ends of eukaryotic chromosomes. Telomeres differentiate the end of the chromosome from sites of DNA damage and control cellular replicative potential. The loss of function of telomeres results in several biological consequences. First, dysfunctional telomeres elicit DNA damage responses and repair activities, which frequently induce cytogenetic abnormalities and genomic instability that are characteristic of human cancer. Second, cellular immortalization resulting from inappropriate elongation of telomeres is a critical component of tumorigenesis. Alternatively, as telomere shortening limits replicative potential, abnormally short telomeres can result in premature cellular senescence that is associated with human pathology ranging from anemia to atherosclerosis. Telomeric DNA is composed of tandem repeats of G‐rich double‐stranded (ds)DNA that terminates in a G‐rich 3’ single‐stranded (ss)DNA overhang. Telomeres are thought to assume a lariat structure termed the t‐loop, which is decorated by an assortment of telomere‐associated proteins. The most unique and least well characterized of these proteins is POT1. POT1 binds telomeric ssDNA via a pair of Nterminal OB‐folds. Through its C‐terminal protein‐interaction domain, POT1 directly binds the telomeric dsDNA‐binding protein TRF2 and participates in heterodimeric complex with the protein TPP1. Inhibition of POT1 induces a robust DNA damage response at telomeres and deregulation of telomere length homeostasis, indicating that POT1 is important in maintaining telomere stability and in regulating telomere length. The goal of my thesis work was to determine which of the three major functions of POT1– telomeric ssDNA‐, TPP1‐, or TRF2‐binding – were required to properly localize POT1 to telomeres and to prevent the telomere instability and length deregulation that occur in the absence of POT1. Using separation‐of‐function mutants of POT1 deficient in at least one of these activities, I found that POT1 depends on its heterodimeric partner TPP1 in cis with telomeric ssDNA‐binding to preserve telomere stability, while POT1 depends on its protein interaction with TRF2 to localize to telomeres and its TRF2‐ and telomeric ssDNA‐binding activities in cis to regulate telomere length.Item Open Access Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas.(Oncotarget, 2012-07) Jiao, Yuchen; Killela, Patrick J; Reitman, Zachary J; Rasheed, Ahmed B; Heaphy, Christopher M; de Wilde, Roeland F; Rodriguez, Fausto J; Rosemberg, Sergio; Oba-Shinjo, Sueli Mieko; Nagahashi Marie, Suely Kazue; Bettegowda, Chetan; Agrawal, Nishant; Lipp, Eric; Pirozzi, Christopher; Lopez, Giselle; He, Yiping; Friedman, Henry; Friedman, Allan H; Riggins, Gregory J; Holdhoff, Matthias; Burger, Peter; McLendon, Roger; Bigner, Darell D; Vogelstein, Bert; Meeker, Alan K; Kinzler, Kenneth W; Papadopoulos, Nickolas; Diaz, Luis A; Yan, HaiMutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas ( more than 10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.Item Open Access Genetic variants in the TEP1 gene are associated with prostate cancer risk and recurrence.(Prostate Cancer Prostatic Dis, 2015-12) Gu, C; Li, Q; Zhu, Y; Qu, Y; Zhang, G; Wang, M; Yang, Y; Wang, J; Jin, L; Wei, Q; Ye, DBACKGROUND: Telomere-related genes play an important role in carcinogenesis and progression of prostate cancer (PCa). It is not fully understood whether genetic variations in telomere-related genes are associated with development and progression in PCa patients. METHODS: Six potentially functional single-nucleotide polymorphisms (SNPs) of three key telomere-related genes were evaluated in 1015 PCa cases and 1052 cancer-free controls, to test their associations with risk of PCa. Among 426 PCa patients who underwent radical prostatectomy (RP), the prognostic significance of the studied SNPs on biochemical recurrence (BCR) was also assessed using the Kaplan-Meier analysis and Cox proportional hazards regression model. The relative telomere lengths (RTLs) were measured in peripheral blood leukocytes using real-time PCR in the RP patients. RESULTS: TEP1 rs1760904 AG/AA genotypes were significantly associated with a decreased risk of PCa (odds ratio (OR): 0.77, 95% confidence interval (CI): 0.64-0.93, P=0.005) compared with the GG genotype. By using median RTL as a cutoff level, RP patients with TEP1 rs1760904 AG/AA genotypes tended to have a longer RTL than those with the GG genotype (OR: 1.55, 95% CI: 1.04-2.30, P=0.031). A significant interaction between TEP1 rs1713418 and age in modifying PCa risk was observed (P=0.005). After adjustment for clinicopathologic risk factors, the presence of heterozygotes or rare homozygotes of TEP1 rs1760904 and TNKS2 rs1539042 were associated with BCR in the RP cohorts (hazard ratio: 0.53, 95% CI: 0.36-0.79, P=0.002 and hazard ratio: 1.67, 95% CI: 1.07-2.48, P=0.017, respectively). CONCLUSIONS: These data suggest that genetic variations in the TEP1 gene may be biomarkers for risk of PCa and BCR after RP.Item Open Access Genomic approaches to guide the molecular classification of glioma(2019) Diplas, BillMalignant gliomas account for more than 80% of all primary brain malignancies and 14,000 deaths in the U.S. annually. Despite aggressive treatment, malignant gliomas are largely fatal, as their invasive nature renders them prone to rapid recurrence. Gliomas are classified according to histopathologic criteria which are critical to treatment planning, as certain subtypes show increased sensitivity to particular therapeutic agents. However, gliomas often exhibit extensive tumor heterogeneity and ambiguity among histologic features, leading to subjectivity in diagnosis and low concordance rates among neuropathologists.
Recently, a number of large-scale genomic studies identified mutations in the TERT promoter and IDH1/2 in ~80% of all gliomas. Based on the occurrence of these mutations, gliomas can be classified into objective molecular subtypes that stratify patients into clear prognostic subgroups more effectively than by histology alone. However, current sequencing-based methods to identify these alterations are limited by low sensitivity (40% tumor cellularity), a major constraint on their clinical utility in the context of diffusely infiltrative gliomas. Importantly, this work also revealed that 20% of glioblastomas lack these alterations, delineating a subset of tumors known as the TERT promoter wildtype-IDH wildtype (TERTpWT-IDHWT) glioblastomas.
Preliminary studies indicate that TERT promoter and IDH mutations can effectively stratify the majority (80%) of patients into clinically-relevant genetic subtypes, however current mutation detection methods lack sensitivity (Sanger sequencing) or are overly time-consuming (next-generation sequencing). Here, we report the development of a qPCR-based approach which can provide more sensitive and rapid detection of these mutations and practical utility in glioma diagnosis by detecting low-abundance mutations (e.g., poorly sampled tumors). Finally, we report the genetic landscape of TERTpWT-IDHWT glioblastomas using whole exome and whole genome sequencing, revealing that these tumors harbor a unique set of genetic alterations and exhibit distinct genetic mechanisms of telomere maintenance from other known subgroups of GBM, including recurrent SMARCAL1 mutations and rearrangements upstream of TERT. Using cell-based assays and markers of alternative lengthening of telomeres (ALT), we provide evidence showing that SMARCAL1 acts as a tumor and ALT suppressor and that loss of function cancer-associated mutations are involved in ALT mechanism of telomere maintenance.
These studies have identified the key underlying genetic alterations that characterize TERTpWT-IDHWT glioblastomas, and can serve as biomarkers for more accurate diagnosis and treatment of this glioma subgroup. By developing a sensitive diagnostic for the critical TERTp and IDH alterations, we facilitate accurate diagnosis and prognostication of glioma patients.
Item Open Access Leukocyte telomere length is associated with disability in older u.s. Population.(J Am Geriatr Soc, 2010-07) Risques, Rosa Ana; Arbeev, Konstantin G; Yashin, Anatoli I; Ukraintseva, Svetlana V; Martin, George M; Rabinovitch, Peter S; Oshima, JunkoOBJECTIVES: To determine whether mean leukocyte telomere length (LTL) serves as a biomarker of disability assessed according to activities of daily living (ADLs) and what factors may modify this relationship. DESIGN: Retrospective cross-sectional study. SETTING: A subset of the National Long Term Care Survey (NTLCS), a Medicare-based U.S. population longitudinal study focused on trends of overall health and functional status in older adults. PARTICIPANTS: Six hundred and twenty-four individuals from the 1999 wave of the NTLCS cohort. MEASUREMENTS: Relative LTL determined according to quantitative polymerase chain reaction. LTL has previously been shown to correlate with common age-related disorders and mortality, as well as with socioeconomic status. RESULTS: A sex difference in LTL was observed but not age-dependent shortening or association with socioeconomic status. LTL was associated with disability and functional status assessed according to ADLs. The association between ADLs and LTL was stronger in subjects without diabetes mellitus, whereas associations were not seen when only subjects with diabetes mellitus were analyzed. Associations between LTL and cardiovascular disease (CVD) and cancer were also present in the group without diabetes mellitus but not in the group with diabetes mellitus. CONCLUSION: These findings support the concept that LTL is a biomarker of overall well-being that is predictive of disability of older individuals in the U.S. population. Diabetes mellitus plays an important role as a modifier of the association between LTL and disability, CVD, and cancer. These associations have clinical implications because of the potential predictive value of LTL and deserve further investigation.Item Open Access Leukocyte telomere length, breast cancer risk in the offspring: the relations with father's age at birth.(Mech Ageing Dev, 2011-04) Arbeev, Konstantin G; Hunt, Steven C; Kimura, Masayuki; Aviv, Abraham; Yashin, Anatoliy IRecent studies have reported that leukocyte telomere length (LTL) is longer in offspring of older fathers. Longer telomeres might increase cancer risk. We examined the relation of father's age at the birth of the offspring (FAB) with LTL in the offspring in 2177 participants of the Family Heart Study and the probability of developing breast cancer in 1405 women from the Framingham Heart Study (offspring cohort). For each year of increase in FAB (adjusted for mother's age at birth), LTLs in the daughters and sons were longer by 19.4bp and 12.2bp, respectively (p<0.0001). Daughters of older fathers were less likely to stay free of breast cancer compared to daughters of younger fathers in empirical (p=0.014) and Cox regression analyses (p=0.0012) adjusted for relevant covariates. We conclude that older fathers endow their offspring with a longer LTL and their daughters with increased susceptibility to breast cancer. These independent observations cannot provide evidence for a causal relationship, mediated by telomere length, between FAB and increased breast cancer risk in daughters. However, with couples delaying having children in today's society, studies exploring the LTL association with increased breast cancer risk in daughters of older fathers might be timely and relevant.Item Open Access Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function.(PLoS One, 2014) Stimpson, Kaitlin M; Sullivan, Lori L; Kuo, Molly E; Sullivan, Beth AThe short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.Item Open Access On the interplay of telomeres, nevi and the risk of melanoma.(PloS one, 2012-01) Bodelon, Clara; Pfeiffer, Ruth M; Bollati, Valentina; Debbache, Julien; Calista, Donato; Ghiorzo, Paola; Fargnoli, Maria Concetta; Bianchi-Scarra, Giovanna; Peris, Ketty; Hoxha, Mirjam; Hutchinson, Amy; Burdette, Laurie; Burke, Laura; Fang, Shenying; Tucker, Margaret A; Goldstein, Alisa M; Lee, Jeffrey E; Wei, Qingyi; Savage, Sharon A; Yang, Xiaohong R; Amos, Christopher; Landi, Maria TeresaThe relationship between telomeres, nevi and melanoma is complex. Shorter telomeres have been found to be associated with many cancers and with number of nevi, a known risk factor for melanoma. However, shorter telomeres have also been found to decrease melanoma risk. We performed a systematic analysis of telomere-related genes and tagSNPs within these genes, in relation to the risk of melanoma, dysplastic nevi, and nevus count combining data from four studies conducted in Italy. In addition, we examined whether telomere length measured in peripheral blood leukocytes is related to the risk of melanoma, dysplastic nevi, number of nevi, or telomere-related SNPs. A total of 796 cases and 770 controls were genotyped for 517 SNPs in 39 telomere-related genes genotyped with a custom-made array. Replication of the top SNPs was conducted in two American populations consisting of 488 subjects from 53 melanoma-prone families and 1,086 cases and 1,024 controls from a case-control study. We estimated odds ratios for associations with SNPs and combined SNP P-values to compute gene region-specific, functional group-specific, and overall P-value using an adaptive rank-truncated product algorithm. In the Mediterranean population, we found suggestive evidence that RECQL4, a gene involved in genome stability, RTEL1, a gene regulating telomere elongation, and TERF2, a gene implicated in the protection of telomeres, were associated with melanoma, the presence of dysplastic nevi and number of nevi, respectively. However, these associations were not found in the American samples, suggesting variable melanoma susceptibility for these genes across populations or chance findings in our discovery sample. Larger studies across different populations are necessary to clarify these associations.Item Open Access Shortened telomere length is associated with increased risk of cancer: a meta-analysis.(PloS one, 2011-01) Ma, Hongxia; Zhou, Ziyuan; Wei, Sheng; Liu, Zhensheng; Pooley, Karen A; Dunning, Alison M; Svenson, Ulrika; Roos, Göran; Hosgood, H Dean; Shen, Min; Wei, QingyiTelomeres play a key role in the maintenance of chromosome integrity and stability, and telomere shortening is involved in initiation and progression of malignancies. A series of epidemiological studies have examined the association between shortened telomeres and risk of cancers, but the findings remain conflicting.A dataset composed of 11,255 cases and 13,101 controls from 21 publications was included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and the relative telomere length. Heterogeneity among studies and their publication bias were further assessed by the χ(2)-based Q statistic test and Egger's test, respectively.The results showed that shorter telomeres were significantly associated with cancer risk (OR = 1.35, 95% CI = 1.14-1.60), compared with longer telomeres. In the stratified analysis by tumor type, the association remained significant in subgroups of bladder cancer (OR = 1.84, 95% CI = 1.38-2.44), lung cancer (OR = 2.39, 95% CI = 1.18-4.88), smoking-related cancers (OR = 2.25, 95% CI = 1.83-2.78), cancers in the digestive system (OR = 1.69, 95% CI = 1.53-1.87) and the urogenital system (OR = 1.73, 95% CI = 1.12-2.67). Furthermore, the results also indicated that the association between the relative telomere length and overall cancer risk was statistically significant in studies of Caucasian subjects, Asian subjects, retrospective designs, hospital-based controls and smaller sample sizes. Funnel plot and Egger's test suggested that there was no publication bias in the current meta-analysis (P = 0.532).The results of this meta-analysis suggest that the presence of shortened telomeres may be a marker for susceptibility to human cancer, but single larger, well-design prospective studies are warranted to confirm these findings.Item Open Access Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites.(Wiley interdisciplinary reviews. RNA, 2022-09) Davis, Justin Alexander; Chakrabarti, KausikTelomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.Item Restricted Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.(PLoS Genet, 2010-08-12) Stimpson, Kaitlin M; Song, Ihn Young; Jauch, Anna; Holtgreve-Grez, Heidi; Hayden, Karen E; Bridger, Joanna M; Sullivan, Beth AGenome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.Item Open Access Telomere-to-telomere assembly of a complete human X chromosome.(Nature, 2020-09) Miga, Karen H; Koren, Sergey; Rhie, Arang; Vollger, Mitchell R; Gershman, Ariel; Bzikadze, Andrey; Brooks, Shelise; Howe, Edmund; Porubsky, David; Logsdon, Glennis A; Schneider, Valerie A; Potapova, Tamara; Wood, Jonathan; Chow, William; Armstrong, Joel; Fredrickson, Jeanne; Pak, Evgenia; Tigyi, Kristof; Kremitzki, Milinn; Markovic, Christopher; Maduro, Valerie; Dutra, Amalia; Bouffard, Gerard G; Chang, Alexander M; Hansen, Nancy F; Wilfert, Amy B; Thibaud-Nissen, Françoise; Schmitt, Anthony D; Belton, Jon-Matthew; Selvaraj, Siddarth; Dennis, Megan Y; Soto, Daniela C; Sahasrabudhe, Ruta; Kaya, Gulhan; Quick, Josh; Loman, Nicholas J; Holmes, Nadine; Loose, Matthew; Surti, Urvashi; Risques, Rosa Ana; Graves Lindsay, Tina A; Fulton, Robert; Hall, Ira; Paten, Benedict; Howe, Kerstin; Timp, Winston; Young, Alice; Mullikin, James C; Pevzner, Pavel A; Gerton, Jennifer L; Sullivan, Beth A; Eichler, Evan E; Phillippy, Adam MAfter two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.