Browsing by Subject "Tetrazoles"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Angiotensin receptor neprilysin inhibition in heart failure: mechanistic action and clinical impact.(J Card Fail, 2015-09) Buggey, Jonathan; Mentz, Robert J; DeVore, Adam D; Velazquez, Eric JHeart failure (HF) is an increasingly common syndrome associated with high mortality and economic burden, and there has been a paucity over the past decade of new pharmacotherapies that improve outcomes. However, recent data from a large randomized controlled trial compared the novel agent LCZ696, a dual-acting angiotensin receptor blocker and neprilysin inhibitor (ARNi), with the well established angiotensin-converting enzyme (ACE) inhibitor enalapril and found significant reduction in mortality among the chronic reduced ejection fraction HF population. Preclinical and clinical data suggest that neprilysin inhibition provides beneficial outcomes in HF patients by preventing the degradation of natriuretic peptides and thereby promoting natriuresis and vasodilatation and counteracting the negative cardiorenal effects of the up-regulated renin-angiotensin-aldosterone system. Agents such as omapatrilat combined neprilysin and ACE inhibition but had increased rates of angioedema. Goals of an improved safety profile provided the rationale for the development of the ARNi LCZ696. Along with significant reductions in mortality and hospitalizations, clinical trials suggest that LCZ696 may improve surrogate markers of HF severity. In this paper, we review the preclinical and clinical data that led to the development of LCZ696, the understanding of the underlying mechanistic action, and the robust clinical impact that LCZ696 may have in the near future.Item Open Access beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice.(J Clin Invest, 2009-05) Walters, Robert W; Shukla, Arun K; Kovacs, Jeffrey J; Violin, Jonathan D; DeWire, Scott M; Lam, Christopher M; Chen, J Ruthie; Muehlbauer, Michael J; Whalen, Erin J; Lefkowitz, Robert JNicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.