Browsing by Subject "Thiourea"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.(Science (New York, N.Y.), 2005-02) Boyce, Michael; Bryant, Kevin F; Jousse, Céline; Long, Kai; Harding, Heather P; Scheuner, Donalyn; Kaufman, Randal J; Ma, Dawei; Coen, Donald M; Ron, David; Yuan, JunyingMost protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.Item Open Access PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis.(Stroke, 2020-05) Wang, Ya-Chao; Li, Xuan; Shen, Yuntian; Lyu, Jingjun; Sheng, Huaxin; Paschen, Wulf; Yang, WeiBackground and Purpose- Ischemic stroke impairs endoplasmic reticulum (ER) function, causes ER stress, and activates the unfolded protein response. The unfolded protein response consists of 3 branches controlled by ER stress sensor proteins, which include PERK (protein kinase RNA-like ER kinase). Activated PERK phosphorylates eIF2α (eukaryotic initiation factor 2 alpha), resulting in inhibition of global protein synthesis. Here, we aimed to clarify the role of the PERK unfolded protein response branch in stroke. Methods- Neuron-specific and tamoxifen-inducible PERK conditional knockout (cKO) mice were generated by cross-breeding Camk2a-CreERT2 with Perkf/f mice. Transient middle cerebral artery occlusion was used to induce stroke. Short- and long-term stroke outcomes were evaluated. Protein synthesis in the brain was assessed using a surface-sensing-of-translation approach. Results- After tamoxifen-induced deletion of Perk in forebrain neurons was confirmed in PERK-cKO mice, PERK-cKO and control mice were subjected to transient middle cerebral artery occlusion and 3 days or 3 weeks recovery. PERK-cKO mice had larger infarcts and worse neurological outcomes compared with control mice, suggesting that PERK-induced eIF2α phosphorylation and subsequent suppression of translation protects neurons from ischemic stress. Indeed, better stroke outcomes were observed in PERK-cKO mice that received postischemic treatment with salubrinal, which can restore the ischemia-induced increase in phosphorylated eIF2α in these mice. Finally, our data showed that post-treatment with salubrinal improved functional recovery after stroke. Conclusions- Here, we presented the first evidence that postischemic suppression of translation induced by PERK activation promotes recovery of neurological function after stroke. This confirms and further extends our previous observations that recovery of ER function impaired by ischemic stress critically contributes to stroke outcome. Therefore, future research should include strategies to improve stroke outcome by targeting unfolded protein response branches to restore protein homeostasis in neurons.Item Open Access Structure-activity relationship studies of salubrinal lead to its active biotinylated derivative.(Bioorganic & medicinal chemistry letters, 2005-09) Long, Kai; Boyce, Michael; Lin, He; Yuan, Junying; Ma, DaweiThe synthesis and structure-activity relationships (SAR) of salubrinal, a small molecule that protects cells from apoptosis induced by endoplasmic reticulum (ER) stress, are described. It is revealed that the trichloromethyl group greatly contributes to the activity. Based on the SAR results, salubrinal was converted into a biotinylated derivative which retains activity and can be used as a biological tool for target identification.Item Open Access Targeting phosphorylation of eukaryotic initiation factor-2α to treat human disease.(Progress in molecular biology and translational science, 2012-01) Fullwood, Melissa J; Zhou, Wei; Shenolikar, ShirishThe unfolded protein response, also known as endoplasmic reticulum (ER) stress, has been implicated in numerous human diseases, including atherosclerosis, cancer, diabetes, and neurodegenerative disorders. Protein misfolding activates one or more of the three ER transmembrane sensors to initiate a complex network of signaling that transiently suppresses protein translation while also enhancing protein folding and proteasomal degradation of misfolded proteins to ensure full recovery from ER stress. Gene disruption studies in mice have provided critical insights into the role of specific signaling components and pathways in the differing responses of animal tissues to ER stress. These studies have emphasized an important contribution of translational repression to sustained insulin synthesis and β-cell viability in experimental models of type-2 diabetes. This has focused attention on the recently discovered small-molecule inhibitors of eIF2α phosphatases that prolong eIF2α phosphorylation to reduce cell death in several animal models of human disease. These compounds show significant cytoprotection in cellular and animal models of neurodegenerative disorders, highlighting a potential strategy for future development of drugs to treat human protein misfolding disorders.