Browsing by Subject "Thromboplastin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access CD142 Identifies Neoplastic Desmoid Tumor Cells, Uncovering Interactions Between Neoplastic and Stromal Cells That Drive Proliferation.(Cancer research communications, 2023-04) Al-Jazrawe, Mushriq; Xu, Steven; Poon, Raymond; Wei, Qingxia; Przybyl, Joanna; Varma, Sushama; van de Rijn, Matt; Alman, Benjamin AThe interaction between neoplastic and stromal cells within a tumor mass plays an important role in cancer biology. However, it is challenging to distinguish between tumor and stromal cells in mesenchymal tumors because lineage-specific cell surface markers typically used in other cancers do not distinguish between the different cell subpopulations. Desmoid tumors consist of mesenchymal fibroblast-like cells driven by mutations stabilizing beta-catenin. Here we aimed to identify surface markers that can distinguish mutant cells from stromal cells to study tumor-stroma interactions. We analyzed colonies derived from single cells from human desmoid tumors using a high-throughput surface antigen screen, to characterize the mutant and nonmutant cells. We found that CD142 is highly expressed by the mutant cell populations and correlates with beta-catenin activity. CD142-based cell sorting isolated the mutant population from heterogeneous samples, including one where no mutation was previously detected by traditional Sanger sequencing. We then studied the secretome of mutant and nonmutant fibroblastic cells. PTX3 is one stroma-derived secreted factor that increases mutant cell proliferation via STAT6 activation. These data demonstrate a sensitive method to quantify and distinguish neoplastic from stromal cells in mesenchymal tumors. It identifies proteins secreted by nonmutant cells that regulate mutant cell proliferation that could be therapeutically.Significance
Distinguishing between neoplastic (tumor) and non-neoplastic (stromal) cells within mesenchymal tumors is particularly challenging, because lineage-specific cell surface markers typically used in other cancers do not differentiate between the different cell subpopulations. Here, we developed a strategy combining clonal expansion with surface proteome profiling to identify markers for quantifying and isolating mutant and nonmutant cell subpopulations in desmoid tumors, and to study their interactions via soluble factors.Item Open Access Porcine endothelial cells cocultured with smooth muscle cells became procoagulant in vitro.(Tissue Eng Part A, 2010-06) Pang, Zhengyu; Niklason, Laura E; Truskey, George AEndothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.Item Open Access Shared monocyte subset phenotypes in HIV-1 infection and in uninfected subjects with acute coronary syndrome.(Blood, 2012-11-29) Funderburg, Nicholas T; Zidar, David A; Shive, Carey; Lioi, Anthony; Mudd, Joseph; Musselwhite, Laura W; Simon, Daniel I; Costa, Marco A; Rodriguez, Benigno; Sieg, Scott F; Lederman, Michael MThe mechanisms responsible for increased cardiovascular risk associated with HIV-1 infection are incompletely defined. Using flow cytometry, in the present study, we examined activation phenotypes of monocyte subpopulations in patients with HIV-1 infection or acute coronary syndrome to find common cellular profiles. Nonclassic (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocytes are proportionally increased and express high levels of tissue factor and CD62P in HIV-1 infection. These proportions are related to viremia, T-cell activation, and plasma levels of IL-6. In vitro exposure of whole blood samples from uninfected control donors to lipopolysaccharide increased surface tissue factor expression on all monocyte subsets, but exposure to HIV-1 resulted in activation only of nonclassic monocytes. Remarkably, the profile of monocyte activation in uncontrolled HIV-1 disease mirrors that of acute coronary syndrome in uninfected persons. Therefore, drivers of immune activation and inflammation in HIV-1 disease may alter monocyte subpopulations and activation phenotype, contributing to a pro-atherothrombotic state that may drive cardiovascular risk in HIV-1 infection.