Browsing by Subject "Tobacco Smoke Pollution"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access AHRR Hypomethylation mediates the association between maternal smoking and metabolic profiles in children.(Hepatology communications, 2023-10) Vidal, Adriana C; Chandramouli, Shivram A; Marchesoni, Joddy; Brown, Nia; Liu, Yukun; Murphy, Susan K; Maguire, Rachel; Wang, Yaxu; Abdelmalek, Manal F; Mavis, Alisha M; Bashir, Mustafa R; Jima, Dereje; Skaar, David A; Hoyo, Cathrine; Moylan, Cynthia ABackground
Tobacco smoking during pregnancy is associated with metabolic dysfunction in children, but mechanistic insights remain limited. Hypomethylation of cg05575921 in the aryl hydrocarbon receptor repressor (AHRR) gene is associated with in utero tobacco smoke exposure. In this study, we evaluated whether AHRR hypomethylation mediates the association between maternal smoking and metabolic dysfunction in children.Methods
We assessed metabolic dysfunction using liver fat content (LFC), serum, and clinical data in children aged 7-12 years (n=78) followed since birth. Maternal smoking was self-reported at 12 weeks gestation. Methylation was measured by means of pyrosequencing at 3 sequential CpG sites, including cg05575921, at birth and at ages 7-12. Regression models were used to evaluate whether AHRR methylation mediated the association between maternal smoking and child metabolic dysfunction.Results
Average AHRR methylation at birth was significantly higher among children of nonsmoking mothers compared with children of mothers who smoked (69.8% ± 4.4% vs. 63.5% ± 5.5, p=0.0006). AHRR hypomethylation at birth was associated with higher liver fat content (p=0.01), triglycerides (p=0.01), and alanine aminotransferase levels (p=0.03), and lower HDL cholesterol (p=0.01) in childhood. AHRR hypomethylation significantly mediated associations between maternal smoking and liver fat content (indirect effect=0.213, p=0.018), triglycerides (indirect effect=0.297, p=0.044), and HDL cholesterol (indirect effect = -0.413, p=0.007). AHRR methylation in childhood (n=78) was no longer significantly associated with prenatal smoke exposure or child metabolic parameters (p>0.05).Conclusions
AHRR hypomethylation significantly mediates the association between prenatal tobacco smoke exposure and features of childhood metabolic dysfunction, despite the lack of persistent hypomethylation of AHRR into childhood. Further studies are needed to replicate these findings and to explore their causal and long-term significance.Item Open Access Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone.(Toxicological sciences : an official journal of the Society of Toxicology, 2016-06) Hall, Brandon J; Cauley, Marty; Burke, Dennis A; Kiany, Abtin; Slotkin, Theodore A; Levin, Edward DActive maternal smoking has adverse effects on neurobehavioral development of the offspring, with nicotine (Nic) providing much of the underlying causative mechanism. To determine whether the lower exposures caused by second-hand smoke are deleterious, we administered tobacco smoke extract (TSE) to pregnant rats starting preconception and continued through the second postnatal week, corresponding to all 3 trimesters of fetal brain development. Dosing was adjusted to produce maternal plasma Nic concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers. We then compared TSE effects to those of an equivalent dose of Nic alone, and to a 10-fold higher Nic dose. Gestational exposure to TSE and Nic significantly disrupted cognitive and behavioral function in behavioral tests given during adolescence and adulthood (postnatal weeks 4-40), producing hyperactivity, working memory deficits, and impairments in emotional processing, even at the low exposure levels corresponding to second-hand smoke. Although TSE effects were highly correlated with those of Nic, the effects of TSE were much larger than could be attributed to just the Nic in the mixture. Indeed, TSE effects more closely resembled those of the 10-fold higher Nic levels, but still exceeded their magnitude. In combination with our earlier findings, this study thus completes the chain of causation to prove that second-hand smoke exposure causes neurodevelopmental deficits, originating in disruption of neurodifferentiation, leading to miswiring of neuronal circuits, and as shown here, culminating in behavioral dysfunction. As low level exposure to Nic alone produced neurobehavioral teratology, 'harm reduction' Nic products do not abolish the potential for neurodevelopmental damage.Item Open Access Critical developmental periods for effects of low-level tobacco smoke exposure on behavioral performance.(Neurotoxicology, 2018-09) Cauley, Marty; Hall, Brandon J; Abreu-Villaça, Yael; Junaid, Shaqif; White, Hannah; Kiany, Abtin; Slotkin, Theodore A; Levin, Edward DTobacco exposure during development leads to neurobehavioral dysfunction in children, even when exposure is limited to secondhand smoke. We have previously shown in rats that developmental exposure to tobacco smoke extract (TSE), at levels mimicking secondhand smoke, starting preconception and extending throughout gestation, evoked subsequent locomotor hyperactivity and cognitive impairment. These effects were greater than those caused by equivalent exposures to nicotine alone, implying that other agents in tobacco smoke contributed to the adverse behavioral effects. In the present study, we examined the critical developmental windows of vulnerability for these effects, restricting TSE administration (0.2 mg/kg/day nicotine equivalent, or DMSO vehicle, delivered by subcutaneously-implanted pumps) to three distinct 10 day periods: the 10 days preceding mating, the first 10 days of gestation (early gestation), or the second 10 days of gestation (late gestation). The principal behavioral effects revealed a critical developmental window of vulnerability, as well as sex selectivity. Late gestational TSE exposure significantly increased errors in the initial training on the radial-arm maze in female offspring, whereas no effects were seen in males exposed during late gestation, or with either sex in the other exposure windows. In attentional testing with the visual signal detection test, male offspring exposed to TSE during early or late gestation showed hypervigilance during low-motivating conditions. These results demonstrate that gestational TSE exposure causes persistent behavioral effects that are dependent on the developmental window in which exposure occurs. The fact that effects were seen at TSE levels modeling secondhand smoke, emphasizes the need for decreasing involuntary tobacco smoke exposure, particularly during pregnancy.Item Open Access Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish.(Neurotoxicology and teratology, 2022-09) Hawkey, Andrew B; Piatos, Perry; Holloway, Zade; Boyda, Jonna; Koburov, Reese; Fleming, Elizabeth; Di Giulio, Richard T; Levin, Edward DPolycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.Item Open Access Self-administration by female rats of low doses of nicotine alone vs. nicotine in tobacco smoke extract.(Drug and alcohol dependence, 2021-11) Levin, Edward D; Wells, Corinne; Pace, Caroline; Abass, Grant; Hawkey, Andrew; Holloway, Zade; Rezvani, Amir H; Rose, Jed EBackground
Nicotine has reinforcing effects, but there are thousands of other compounds in tobacco, some of which might interact with nicotine reinforcement.Aims
This rat study was conducted to determine if nicotine self-administration is altered by co-administration of the complex mixture of compounds in tobacco smoke extract (TSE).Methods
Female Sprague-Dawley rats were tested for self-administration of low doses of nicotine (3 or 10 µg/kg/infusion) at three different rates of reinforcement (FR1, FR3 and FR5) over three weeks either alone or together with the complex mixture of tobacco smoke extract (TSE).Results
Rats self-administering 3 µg/kg/infusion of nicotine alone showed a rapid initiation on an FR1 schedule, but declined with FR5. Rats self-administering nicotine in TSE acquired self-administration more slowly, but increased responding over the course of the study. With 10 µg/kg/infusion rats self-administered significantly more nicotine alone than rats self-administering the same nicotine dose in TSE. Rats self-administering nicotine alone took significantly more infusions with the 10 than the 3 µg/kg/infusion dose, whereas rats self-administering nicotine in TSE did not. Nicotine in TSE led to a significantly greater locomotor hyperactivity at a dose of 0.1 mg/kg compared to rats that received nicotine alone. Rats self-administering nicotine alone had significantly more responding on the active vs. inactive lever, but rats self-administering the same nicotine doses in TSE did not.Conclusions
Self-administration of nicotine in a purer form appears to be more clearly discriminated and dose-related than nicotine self-administered in the complex mixture of TSE.