Browsing by Subject "Transcranial magnetic stimulation"
- Results Per Page
- Sort Options
Item Open Access Decision-Making in the Primate Brain(2016) Drucker, Caroline BethMaking decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Item Open Access Effect of Repetitive Transcranial Magnetic Stimulation on the Structural and Functional Connectome in Patients with Major Depressive Disorder(2017-05-08) Asturias, GabrielaThrough this whole-brain exploratory analysis, our aim is to study the effect of repetitive transcranial magnetic stimulation (rTMS) on the structural and functional connectivity of patients with major depressive disorder. Twenty-five currently depressed patients (age 21–68) participated in the study. Patients received daily 10-Hz rTMS over the left dlPFC five days/week for five weeks. Treatment response was assessed using the 24-item Hamilton Rating Scale for Depression (HAMD-24) at baseline and after the course of TMS. MRIs were acquired within seven days prior to starting rTMS and within three days after the end of treatment. Using diffusion tensor images and resting-state fMRI data we computed the whole-brain functional and structural connectomes. We used graph theory techniques to characterize brain architecture to identify potential biomarkers for depression severity and response to treatment. The frontal pole, part of the midline core in the default mode network (DMN) and the exteroception compartment of the depression network (DN), was identified as a potential biomarker for depression severity. The intracalcarine cortex and lateral occipital cortex, neither part of the default mode network and depression network, were defined as potential biomarkers for treatment response. The subcallosal cortex, orbitofrontal cortex, and supramarginal gyrus were identified as potential biomarkers for treatment response and their change across the treatment protocol could explain the simultaneous effect of rTMS on structural and functional connectivity. Ultimately, the goal is to articulate specific hypotheses that will inform treatment strategies for patients with major depressive disorder.Item Open Access Examining the Role of Lateral Parietal Cortex in Emotional Distancing Using TMS.(Cognitive, affective & behavioral neuroscience, 2020-10) Powers, John P; Davis, Simon W; Neacsiu, Andrada D; Beynel, Lysianne; Appelbaum, Lawrence G; LaBar, Kevin SWe recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.Item Open Access Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex.(Neuropsychologia, 2020-10) Gamboa Arana, Olga Lucia; Palmer, Hannah; Dannhauer, Moritz; Hile, Connor; Liu, Sicong; Hamdan, Rena; Brito, Alexandra; Cabeza, Roberto; Davis, Simon W; Peterchev, Angel V; Sommer, Marc A; Appelbaum, Lawrence GDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During each participants' first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered at one of two latencies, either 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at the N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions at the N2-Onset. TMS effects on the P3 VEP showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal the influence of TMS intensity and timing on visual perception and electrophysiological responses, with optimal facilitation at stimulation intensities below RMT.Item Open Access Multi-Scale Modeling for Analysis and Design of Transcranial Electric and Magnetic Brain Stimulation(2021) Aberra, Aman SenayTranscranial electric stimulation (tES) and magnetic stimulation (TMS) can noninvasively modulate brain activity in humans, offering broad research and therapeutic applications. However, improving the efficacy and selectivity of these techniques is challenging without a mechanistic understanding of how the stimulation parameters determine the neural response and how these parameters can be manipulated to activate specific neural circuits. This dissertation presents multiscale computational models that predict the neural response to TMS and tES at the single-cell and population levels for analysis and rational design of transcranial brain stimulation.We adapted biophysically-realistic models of cortical neurons from the Blue Brain network to the properties of mature rat and human neurons and characterized the direct response to extracellular stimulation with both subthreshold and suprathreshold electric field (E-field) stimulation modalities. These models included 3D reconstructed axonal and dendritic arbors as well as multiple excitatory and inhibitory cell types with validated electrophysiological behavior. Axon terminals were the lowest threshold elements for stimulation, and their dependence on threshold and polarization was determined by cell-type specific morphological features, such as myelination, diameter, and branching. However, we found for TMS pulse waveforms specifically, activation thresholds were higher than expected from in vivo applications. We improved the fidelity of the axon models further using a feature-based optimization algorithm, but these modifications did not produce models with significantly lower thresholds, suggesting other factors may allow for suprathreshold activation at the E-field intensities induced experimentally. The neuron models were then embedded in anatomically-realistic volume conductor head models of the E-field in humans derived from magnetic resonance imaging (MRI) data to simulate the direct neural response to TMS and tDCS. The models reproduced relative trends in motor thresholds as well as the experimentally-measured strength–duration time constant. TMS activated with lowest intensity intracortical axon terminals in the superficial gyral crown and lip region, proportional to the E-field magnitude. Thresholds were lowest for the L5 pyramidal cells (PCs), with activation of the L2/3 PCs and large basket cells at most intensities. Reversing the pulse direction revealed waveform-dependent spatial shifts in the activated neural population that may explain experimentally observed differences in the latencies and thresholds of muscle responses to TMS of motor cortex. We also quantified the subthreshold polarization generated by conventional tDCS with large rectangular pad electrodes and 4×1 high definition (HD) tDCS electrodes targeting the motor hand knob. Axonal and dendritic terminal polarization was higher than somatic polarization in all cell types, and polarization trends between cell types varied by subcellular compartment. While the HD tDCS montage produced a significantly more focal E-field within the brain, both montages generated broad regions of depolarization and hyperpolarization beneath the electrodes. These simulations demonstrated the importance of coupling the E-field to neuron models incorporating non-linear membrane dynamics and realistic morphologies for predicting the neural response to TMS and tES. Indeed, extrapolating the neural response (polarization or threshold) from the uniform E-field or macroscopic E-field components often led to erroneous predictions. Due to the high computational cost of these biophysically-realistic models, we also developed rapid estimators of the neural response using a 3D convolutional neural network. This approach allowed for reproducing the threshold distributions of the realistic model neurons with several orders of magnitude shorter run times than using the E-field distribution alone. In sum, this work provides both computational tools and mechanistic insights to improve the use and development of transcranial magnetic and electrical stimulation technologies.
Item Open Access The Effects of Transcranial Magnetic Stimulation (TMS) on the Neural Activity of Awake Non-Human Primates(2015) Grigsby, Erinn MTranscranial magnetic stimulation, or TMS, is a non-invasive stimulation method which induces an electric field in the brain. For the past two decades it has been used extensively in clinical and research settings for basic research and treatment studies of neurological disorders such as depression. Despite its widespread use and established safety, the mechanism of effect for the stimulation is still poorly understood. The goal of this project is to study the effect of single pulse TMS on single neurons in awake rhesus macaques. By using the modified electronics developed by Mueller et al. (2014), we were able to minimize the duration of the stimulus artifact in the recordings down to a few milliseconds, allowing us to capture and characterize the neural activity in the frontal eye field (FEF) and primary motor cortex (M1) immediately following a TMS pulse. We found that the intracranial electric field induced by TMS has a variety of effects on individual neurons but a distinct pattern of effect on the population activity: a short-latency excitation (<20ms latency) followed by a longer-lasting inhibition (for ~100 ms). These effects were absent in Sham TMS treatments. Our single pulse TMS protocol caused no long term effects on neural activity, but repetitive TMS (rTMS) protocols of 1 and 5 Hz changed spontaneous firing rates. The outcome of this work is to demonstrate empirically how TMS affects neurons in the primate brain.
Item Open Access Transcranial Magnetic Stimulation enhances working memory(2016-04-22) Austin, Rebecca GarlandCognitive decline associated with aging affects a large proportion of America’s progressively older population. To remedy this decline, various working memory (WM) training protocols are emerging, the most novel of which utilize Transcranial Magnetic Stimulation (TMS) to excite neuronal activity, induce long-term potentiation, and enhance cognitive functioning. Ultimately aiming to remediate WM decline in aging adults by using TMS, this study first sought to establish ideal TMS parameters to induce WM improvements. Using a delayed match-to-sample (DMS) WM task with both maintenance and manipulation conditions, it was hypothesized that active TMS, relative to sham TMS, would differentially impact task performance depending on its timing of administration, either before encoding or at the end of the delay phases. Following screening and practice, subjects trained on the DMS task for 4 hours over 2 days, receiving 5s of either active 5Hz TMS at 100% of motor threshold to the dorsolateral prefrontal cortex (DLPFC) or sham TMS. The phase of active versus sham TMS stimulation was counterbalanced across participants. The results suggest that active TMS improved DMS reaction time and accuracy as compared to sham TMS. Specifically, maintenance task performance improved with TMS before encoding, while manipulation task performance was aided by TMS during the delay period. Although promising, these results should be bolstered by increased sample sizes and individualized fMRI-based DLPFC targeting before deciding on the optimal timing of TMS for each DMS task condition in aging adults.Item Open Access When Working Memory and Attention Compete: Characterizing the Dynamic Interdependence between our Mental Workspace and External Environment(2015) Kiyonaga, AnastasiaAll of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.