Browsing by Subject "Transcription Factor AP-1"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and β1-integrin signaling pathways.(J Invest Dermatol, 2013-01) Ke, Hengning; Augustine, Christina K; Gandham, Vineela D; Jin, Jane Y; Tyler, Douglas S; Akiyama, Steven K; Hall, Russell P; Zhang, Jennifer YThe molecular mechanisms mediating cylindromatosis (CYLD) tumor suppressor function appear to be manifold. Here, we demonstrate that, in contrast to the increased levels of phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CYLD was decreased in a majority of the melanoma cell lines and tissues examined. Exogenous expression of CYLD but not its catalytically deficient mutant markedly inhibited melanoma cell proliferation and migration in vitro and subcutaneous tumor growth in vivo. In addition, the melanoma cells expressing exogenous CYLD were unable to form pulmonary tumor nodules following tail-vein injection. At the molecular level, CYLD decreased β1-integrin and inhibited pJNK induction by tumor necrosis factor-α or cell attachment to collagen IV. Moreover, CYLD induced an array of other molecular changes associated with modulation of the "malignant" phenotype, including a decreased expression of cyclin D1, N-cadherin, and nuclear Bcl3, and an increased expression of p53 and E-cadherin. Most interestingly, coexpression of the constitutively active MKK7 or c-Jun mutants with CYLD prevented the above molecular changes, and fully restored melanoma growth and metastatic potential in vivo. Our findings demonstrate that the JNK/activator protein 1 signaling pathway underlies the melanoma growth and metastasis that are associated with CYLD loss of function. Thus, restoration of CYLD and inhibition of JNK and β1-integrin function represent potential therapeutic strategies for treatment of malignant melanoma.Item Open Access Epigenetic basis of oncogenic-Kras-mediated epithelial-cellular proliferation and plasticity.(Developmental cell, 2022-02) Kadur Lakshminarasimha Murthy, Preetish; Xi, Rui; Arguijo, Diana; Everitt, Jeffrey I; Kocak, Dewran D; Kobayashi, Yoshihiko; Bozec, Aline; Vicent, Silvestre; Ding, Shengli; Crawford, Gregory E; Hsu, David; Tata, Purushothama Rao; Reddy, Timothy; Shen, XilingOncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.Item Open Access JunB promotes Th17 cell identity and restrains alternative CD4+ T-cell programs during inflammation.(Nature communications, 2017-08-21) Carr, Tiffany M; Wheaton, Joshua D; Houtz, Geoffrey M; Ciofani, MariaT helper 17 (Th17) cell plasticity contributes to both immunity and autoimmunity; however, the factors that control lineage flexibility are mostly unknown. Here we show the activator protein-1 (AP-1) factor JunB is an essential regulator of Th17 cell identity. JunB activates expression of Th17 lineage-specifying genes and coordinately represses genes controlling Th1 and regulatory T-cell fate. JunB supports Th17 cell identity by regulating key AP-1 complex constituents. In particular, JunB limits the expression of the subset repressor IRF8, and impedes access of JunD to regulatory regions of alternative effector loci. Although dispensable for homeostatic Th17 cell development, JunB is required for induction and maintenance of Th17 effector responses in the inflammatory contexts of both acute infection and chronic autoimmunity in mice. Through regulatory network analysis, we show that JunB is a core regulator of global transcriptional programs that promote Th17 cell identity and restrict alternative CD4+ T-cell potential.AP-1 family transcription factors regulate CD4+ T helper cell differentiation. Here the authors show that the AP-1 member JunB is a nonredundant regulator of transcriptional programs that support Th17 cell identity and restrain alternative Th1 and Treg cell fates in inflammatory contexts of acute fungal infection and chronic autoimmunity.