Browsing by Subject "Tryptophan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma.(Scientific reports, 2018-05) Ibana, Joyce A; Sherchand, Shardulendra P; Fontanilla, Francis L; Nagamatsu, Takeshi; Schust, Danny J; Quayle, Alison J; Aiyar, AshokThe intracellular bacterial pathogen, Chlamydia trachomatis, is a tryptophan auxotroph. Therefore, induction of the host tryptophan catabolizing enzyme, indoleamine-2,3-dioxgenase-1 (IDO1), by interferon gamma (IFNγ) is one of the primary protective responses against chlamydial infection. However, despite the presence of a robust IFNγ response, active and replicating C. trachomatis can be detected in cervical secretions of women. We hypothesized that a primary C. trachomatis infection may evade the IFNγ response, and that the protective effect of this cytokine results from its activation of tryptophan catabolism in bystander cells. To test this hypothesis, we developed a novel method to separate a pool of cells exposed to C. trachomatis into pure populations of live infected and bystander cells and applied this technique to distinguish between the effects of IFNγ on infected and bystander cells. Our findings revealed that the protective induction of IDO1 is suppressed specifically within primary infected cells because Chlamydia attenuates the nuclear import of activated STAT1 following IFNγ exposure, without affecting STAT1 levels or phosphorylation. Critically, the IFNγ-mediated induction of IDO1 activity is unhindered in bystander cells. Therefore, the IDO1-mediated tryptophan catabolism is functional in these cells, transforming these bystander cells into inhospitable hosts for a secondary C. trachomatis infection.Item Open Access Conformational changes of FtsZ reported by tryptophan mutants.(Biochemistry, 2011-05-03) Chen, Yaodong; Erickson, Harold PE. coli FtsZ has no native tryptophan. We showed previously that the mutant FtsZ L68W gave a 2.5-fold increase in trp fluorescence when assembly was induced by GTP. L68 is probably buried in the protofilament interface upon assembly, causing the fluorescence increase. In the present study we introduced trp residues at several other locations and examined them for assembly-induced fluorescence changes. L189W, located on helix H7 and buried between the N- and C-terminal subdomains, showed a large fluorescence increase, comparable to L68W. This may reflect a shift or rotation of the two subdomains relative to each other. L160W showed a smaller increase in fluorescence, and Y222W a decrease in fluorescence, upon assembly. These two are located on the surface of the N and C subdomains, near the domain boundary. The changes in fluorescence may reflect movements of the domains or of nearby side chains. We prepared a double mutant Y222W/S151C and coupled ATTO-655 to the cys. The Cα of trp in the C-terminal subdomain was 10 Å away from that of the cys in the N-terminal subdomain, permitting the ATTO to make van der Waals contact with the trp. The ATTO fluorescence showed strong tryptophan-induced quenching. The quenching was reduced following assembly, consistent with a movement apart of the two subdomains. Movements of one to several angstroms are probably sufficient to account for the changes in trp fluorescence and trp-induced quenching of ATTO. Assembly in GDP plus DEAE dextran produces tubular polymers that are related to the highly curved, mini-ring conformation. No change in trp fluorescence was observed upon assembly of these tubes, suggesting that the mini-ring conformation is the same as that of a relaxed, monomeric FtsZ.Item Open Access Increased tryptophan, but not increased glucose metabolism, predict resistance of pembrolizumab in stage III/IV melanoma.(Oncoimmunology, 2023-01) Oldan, Jorge D; Giglio, Benjamin C; Smith, Eric; Zhao, Weiling; Bouchard, Deeanna M; Ivanovic, Marija; Lee, Yueh Z; Collichio, Frances A; Meyers, Michael O; Wallack, Diana E; Abernethy-Leinwand, Amber; Long, Patricia K; Trembath, Dimitri G; Googe, Paul B; Kowalski, Madeline H; Ivanova, Anastasia; Ezzell, Jennifer A; Nikolaishvili-Feinberg, Nana; Thomas, Nancy E; Wong, Terence Z; Ollila, David W; Li, Zibo; Moschos, Stergios JClinical trials of combined IDO/PD1 blockade in metastatic melanoma (MM) failed to show additional clinical benefit compared to PD1-alone inhibition. We reasoned that a tryptophan-metabolizing pathway other than the kynurenine one is essential. We immunohistochemically stained tissues along the nevus-to-MM progression pathway for tryptophan-metabolizing enzymes (TMEs; TPH1, TPH2, TDO2, IDO1) and the tryptophan transporter, LAT1. We assessed tryptophan and glucose metabolism by performing baseline C11-labeled α-methyl tryptophan (C11-AMT) and fluorodeoxyglucose (FDG) PET imaging of tumor lesions in a prospective clinical trial of pembrolizumab in MM (clinicaltrials.gov, NCT03089606). We found higher protein expression of all TMEs and LAT1 in melanoma cells than tumor-infiltrating lymphocytes (TILs) within MM tumors (n = 68). Melanoma cell-specific TPH1 and LAT1 expressions were significantly anti-correlated with TIL presence in MM. High melanoma cell-specific LAT1 and low IDO1 expression were associated with worse overall survival (OS) in MM. Exploratory optimal cutpoint survival analysis of pretreatment 'high' vs. 'low' C11-AMT SUVmax of the hottest tumor lesion per patient revealed that the 'low' C11-AMT SUVmax was associated with longer progression-free survival in our clinical trial (n = 26). We saw no such trends with pretreatment FDG PET SUVmax. Treatment of melanoma cell lines with telotristat, a TPH1 inhibitor, increased IDO expression and kynurenine production in addition to suppression of serotonin production. High melanoma tryptophan metabolism is a poor predictor of pembrolizumab response and an adverse prognostic factor. Serotoninergic but not kynurenine pathway activation may be significant. Melanoma cells outcompete adjacent TILs, eventually depriving the latter of an essential amino acid.Item Open Access Osmolyte-induced folding of an intrinsically disordered protein: folding mechanism in the absence of ligand.(Biochemistry, 2010-06-29) Chang, Yu-Chu; Oas, Terrence GUnderstanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.Item Open Access Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain.(Nucleic Acids Res, 2014-12-16) Wojtaszek, Jessica L; Wang, Su; Kim, Hyungjin; Wu, Qinglin; D'Andrea, Alan D; Zhou, PeiFAAP20 is an integral component of the Fanconi anemia core complex that mediates the repair of DNA interstrand crosslinks. The ubiquitin-binding capacity of the FAAP20 UBZ is required for recruitment of the Fanconi anemia complex to interstrand DNA crosslink sites and for interaction with the translesion synthesis machinery. Although the UBZ-ubiquitin interaction is thought to be exclusively encapsulated within the ββα module of UBZ, we show that the FAAP20-ubiquitin interaction extends beyond such a canonical zinc-finger motif. Instead, ubiquitin binding by FAAP20 is accompanied by transforming a disordered tail C-terminal to the UBZ of FAAP20 into a rigid, extended β-loop that latches onto the complex interface of the FAAP20 UBZ and ubiquitin, with the invariant C-terminal tryptophan emanating toward I44(Ub) for enhanced binding specificity and affinity. Substitution of the C-terminal tryptophan with alanine in FAAP20 not only abolishes FAAP20-ubiquitin binding in vitro, but also causes profound cellular hypersensitivity to DNA interstrand crosslink lesions in vivo, highlighting the indispensable role of the C-terminal tail of FAAP20, beyond the compact zinc finger module, toward ubiquitin recognition and Fanconi anemia complex-mediated DNA interstrand crosslink repair.