Browsing by Subject "Tunicamycin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.(Science (New York, N.Y.), 2005-02) Boyce, Michael; Bryant, Kevin F; Jousse, Céline; Long, Kai; Harding, Heather P; Scheuner, Donalyn; Kaufman, Randal J; Ma, Dawei; Coen, Donald M; Ron, David; Yuan, JunyingMost protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.Item Open Access Influence of Glycosylation Inhibition on the Binding of KIR3DL1 to HLA-B*57:01.(PloS one, 2015-01) Salzberger, Wilhelm; Garcia-Beltran, Wilfredo F; Dugan, Haley; Gubbala, Supreetha; Simoneau, Camille; Gressens, Simon B; Jost, Stephanie; Altfeld, MarcusViral infections can affect the glycosylation pattern of glycoproteins involved in antiviral immunity. Given the importance of protein glycosylation for immune function, we investigated the effect that modulation of the highly conserved HLA class I N-glycan has on KIR:HLA interactions and NK cell function. We focused on HLA-B*57:01 and its interaction with KIR3DL1, which has been shown to play a critical role in determining the progression of a number of human diseases, including human immunodeficiency virus-1 infection. 721.221 cells stably expressing HLA-B*57:01 were treated with a panel of glycosylation enzyme inhibitors, and HLA class I expression and KIR3DL1 binding was quantified. In addition, the functional outcomes of HLA-B*57:01 N-glycan disruption/modulation on KIR3DL1ζ+ Jurkat reporter cells and primary human KIR3DL1+ NK cells was assessed. Different glycosylation enzyme inhibitors had varying effects on HLA-B*57:01 expression and KIR3DL1-Fc binding. The most remarkable effect was that of tunicamycin, an inhibitor of the first step of N-glycosylation, which resulted in significantly reduced KIR3DL1-Fc binding despite sustained expression of HLA-B*57:01 on 721.221 cells. This effect was paralleled by decreased activation of KIR3DL1ζ+ Jurkat reporter cells, as well as increased degranulation of primary human KIR3DL1+ NK cell clones when encountering HLA-B*57:01-expressing 721.221 cells that were pre-treated with tunicamycin. Overall, these results demonstrate that N-glycosylation of HLA class I is important for KIR:HLA binding and has an impact on NK cell function.Item Open Access MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy.(Cancer Res, 2009-10-01) Balakumaran, Bala S; Porrello, Alessandro; Hsu, David S; Glover, Wayne; Foye, Adam; Leung, Janet Y; Sullivan, Beth A; Hahn, William C; Loda, Massimo; Febbo, Phillip GLoss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.Item Open Access Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension.(J Cell Biol, 1994-02) Patterson, SI; Skene, JHIn neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side-chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone-mediated extension of neuronal processes.