Browsing by Subject "Urine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Metadata only Biomarkers and proteomic analysis of osteoarthritis.(Matrix Biol, 2014-10) Hsueh, Ming-Feng; Önnerfjord, Patrik; Kraus, Virginia ByersOur friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.Item Open Access The Aspergillus Lateral Flow Assay for the Diagnosis of Invasive Aspergillosis: an Update.(Current fungal infection reports, 2020-01) Jenks, Jeffrey D; Miceli, Marisa H; Prattes, Juergen; Mercier, Toine; Hoenigl, MartinPurpose of review
To review the data on the Aspergillus lateral flow assay for the diagnosis of invasive Aspergillosis.Recent findings
Aspergillus spp. cause a wide spectrum of disease with invasive aspergillosis (IA) as its most severe manifestation. Early and reliable diagnosis of disease is crucial to decrease associated morbidity and mortality, and enable prompt initiation of treatment for IA. Most recently, non-culture-based tests, such as Aspergillus galactomannan (GM), have been useful in early identification and treatment of patients with IA. However, cost, turnaround time, and variable performance indifferent populations at risk for IA remain significant drawbacks to the use of this test. Several diagnostic tests for IA have been developed, including the sōna Aspergillus GM Lateral flow assay (GM-LFA) rapid test.Summary
The GM-LFA has shown excellent performance for the diagnosis of IA in patients with hematologic malignancy and may be a viable option for settings where ELISA GM testing is not feasible. Further evaluation of the GM-LFA in the non-hematology setting is ongoing, including in solid organ transplant recipients and patients in the intensive care unit.